Publications by authors named "Jiddeke M van de Kamp"

Sulfate is an important anion as sulfonation is essential in modulation of several compounds, such as exogens, polysaccharide chains of proteoglycans, cholesterol or cholesterol derivatives and tyrosine residues of several proteins. Sulfonation requires the presence of both the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and a sulfotransferase. Genetic disorders affecting sulfonation, associated with skeletal abnormalities, impaired neurological development and endocrinopathies, demonstrate the importance of sulfate.

View Article and Find Full Text PDF

Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort.

View Article and Find Full Text PDF

Glutaminase (GLS) hyperactivity was first described in 2019 in a patient with profound developmental delay and infantile cataract. Here, we describe a 4-year-old boy with GLS hyperactivity due to a de novo heterozygous missense variant in , detected by trio whole exome sequencing. This boy also exhibits developmental delay without dysmorphic features, but does not have cataract.

View Article and Find Full Text PDF
Article Synopsis
  • Sulfate is crucial for various body functions, particularly in maintaining bone and cartilage health, and the transporter SLC26A1 is central to sulfate reabsorption in the kidneys.
  • A unique mutation in SLC26A1 was discovered in a patient with specific health issues, and further studies showed a link between harmful SLC26A1 variants and low plasma sulfate levels in a large population.
  • The findings underscore SLC26A1's significance in sulfate balance, suggesting it could be a target for improving musculoskeletal health, especially relating to conditions like back pain.
View Article and Find Full Text PDF

Sulfate is the fourth most abundant anion in human plasma but is not measured in clinical practice and little is known about the consequences of sulfate deficiency. Nevertheless, sulfation plays an essential role in the modulation of numerous compounds, including proteoglycans and steroids. We report the first patient with a homozygous loss-of-function variant in the SLC13A1 gene, encoding a renal and intestinal sulfate transporter, which is essential for maintaining plasma sulfate levels.

View Article and Find Full Text PDF

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein.

View Article and Find Full Text PDF

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene.

View Article and Find Full Text PDF

In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations.

View Article and Find Full Text PDF

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain.

View Article and Find Full Text PDF

Variants in the KIF1A gene can cause autosomal recessive spastic paraplegia 30, autosomal recessive hereditary sensory neuropathy, or autosomal (de novo) dominant mental retardation type 9. More recently, variants in KIF1A have also been described in a few cases with autosomal dominant spastic paraplegia. Here, we describe 20 KIF1A variants in 24 patients from a clinical exome sequencing cohort of 347 individuals with a mostly 'pure' spastic paraplegia.

View Article and Find Full Text PDF

SLC35A2-CDG is caused by mutations in the X-linked SLC35A2 gene encoding the UDP-galactose transporter. SLC35A2 mutations lead to hypogalactosylation of N-glycans. SLC35A2-CDG is characterized by severe neurological symptoms and, in many patients, early-onset epileptic encephalopathy.

View Article and Find Full Text PDF

Since Garrod's first description of alkaptonuria in 1902, and newborn screening for phenylketonuria introduced in the 1960s, P4 medicine (preventive, predictive, personalized, and participatory) has been a reality for the clinician serving patients with inherited metabolic diseases. The era of high-throughput technologies promises to accelerate its scale dramatically. Genomics, transcriptomics, epigenomics, proteomics, glycomics, metabolomics, and lipidomics offer an amazing opportunity for holistic investigation and contextual pathophysiologic understanding of inherited metabolic diseases for precise diagnosis and tailored treatment.

View Article and Find Full Text PDF

DFNB28 is characterized by prelingual, severe to profound sensorineural hearing impairment (HI). It is associated with mutations in exon 6 and 7 of TRIOBP and has not been reported in the European population. Here, we describe two isolated cases of Dutch origin with congenital, moderate HI and compound heterozygous mutations in TRIOBP.

View Article and Find Full Text PDF

Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes.

View Article and Find Full Text PDF

A variety of pathologies can underlie early-onset severe encephalopathy with epilepsy. To aid the diagnostic process in such patients we present an overview of causes, including the rapidly expanding list of genes involved. When no explanation is found, whole-exome sequencing (WES) can be used in an attempt to identify gene defects in patients suspected to suffer from a genetic form.

View Article and Find Full Text PDF

Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5-116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds.

View Article and Find Full Text PDF

Background: Urinary concentrations of creatine and guanidinoacetic acid divided by creatinine are informative markers for cerebral creatine deficiency syndromes (CDSs). The renal excretion of these substances varies substantially with age and sex, challenging the sensitivity and specificity of postanalytical interpretation.

Methods: Results from 155 patients with CDS and 12 507 reference individuals were contributed by 5 diagnostic laboratories.

View Article and Find Full Text PDF

Creatine transporter (SLC6A8) deficiency is the most common cause of cerebral creatine syndromes, and is characterized by depletion of creatine in the brain. Manifestations of this X-linked disorder include intellectual disability, speech/language impairment, behavior abnormalities, and seizures. At the moment, no effective treatment is available.

View Article and Find Full Text PDF

Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared.

View Article and Find Full Text PDF

The creatine transporter (CRTR) defect is a recently discovered cause of X-linked intellectual disability for which treatment options have been explored. Creatine monotherapy has not proved effective, and the effect of treatment with L-arginine is still controversial. Nine boys between 8 months and 10 years old with molecularly confirmed CRTR defect were followed with repeated (1)H-MRS and neuropsychological assessments during 4-6 years of combination treatment with creatine monohydrate, L-arginine, and glycine.

View Article and Find Full Text PDF

Background: Intrachromosomal triplications are rare chromosomal rearrangements. In most triplication cases the phenotype is similar to, but more severe than observed in patients with a duplication of the same region. The Williams-Beuren syndrome (WBS) region on 7q11.

View Article and Find Full Text PDF

Familial hemophagocytic lymphohistiocytosis (FHLH) is a genetic heterogeneous autosomal recessive disorder. We report two siblings with FHLH caused by a PRF1 mutation. The first child died in utero with hydrops fetalis and the second presented soon after birth with fatal multiple organ failure.

View Article and Find Full Text PDF

Autosomal recessive lethal and severe osteogenesis imperfecta (OI) is caused by the deficiency of cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase 1 (P3H1) because of CRTAP and LEPRE1 mutations. We analyzed five families in which 10 individuals had a clinical diagnosis of lethal and severe OI with an overmodification of collagen type I on biochemical testing and without a mutation in the collagen type I genes. CRTAP mutations not described earlier were identified in the affected individuals.

View Article and Find Full Text PDF

Creatine transporter deficiency is an X-linked mental retardation disorder caused by mutations in the creatine transporter gene, SLC6A8. In a European Mental Retardation Consortium panel of 66 patients, we identified a male with mental retardation, caused by a c.1059_1061delCTT; p.

View Article and Find Full Text PDF