J Neuroimmunol
September 2021
SARS-CoV-2-induced COVID-19 is a serious pandemic of the 21st century, which has caused a devastating loss of lives and a global economic catastrophe. A successful vaccine against SARS-CoV-2 has suffered a delay due to lack of substantial knowledge about its mechanisms of action. Understanding the innate immune system against SARS-CoV-2 and the role of heat shock proteins' (HSP) inhibiting and resolution of inflammatory pathways may provide information to the low SARS-CoV-2 mortality rates in Africa.
View Article and Find Full Text PDFNeonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates.
View Article and Find Full Text PDFEur Neuropsychopharmacol
January 2021
We have previously reported that vortioxetine, unlike the selective serotonin reuptake inhibitor fluoxetine, produces a rapid increase of dendritic spine number and Brain Derived Neurotrophic Factor (BDNF)-associated formation of synapses with mitochondrial support in the rat hippocampal CA1 and dentate gyrus. As a continuation of this line of research, and given the putative role of brain glial cells in mediating antidepressant responses the present study investigated early effects of vortioxetine on hippocampal microvasculature and Vascular Endothelial Growth Factor (VEGF) and astrocytes and microglia cells. Rats were treated for 1 week with vortioxetine (1.
View Article and Find Full Text PDFBackground: Electroconvulsive therapy (ECT) is a highly effective and fast-acting treatment for depression used in the clinic. Its mechanism of therapeutic action remains uncertain. Previous studies have focused on documenting neuroplasticity in the early phase following electroconvulsive seizures (ECS), an animal model of ECT.
View Article and Find Full Text PDFBackground: Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling.
View Article and Find Full Text PDF