Publications by authors named "Jibin Kunnumpurathu"

The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.

View Article and Find Full Text PDF

Correction for 'Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy' by Ramapurath S. Jayasree , , 2020, , 3381-3391, https://doi.org/10.

View Article and Find Full Text PDF

The wide arena of applications opened by nanotechnology is multidimensional. It is already been proven that its prominence can continuously influence human life. The role of stem cells in curing degenerative diseases is another major area of research.

View Article and Find Full Text PDF

Target-specific reactive oxygen species (ROS)-based cancer treatments with high therapeutic efficacy and minimal side effects have been identified recently as a potentially effective cancer management strategy. Herein, we report the fabrication of a targeted nanotheranostic agent built on an iron oxide nanoparticle-decorated graphene-gold hybrid [plasmonic magnetic nanoprobe (PMNP)] for self-guided magnetic resonance (MR)/surface-enhanced Raman scattering imaging and photothermal therapy (PTT)/chemodynamic therapy (CDT). In the presence of glutathione, which is abundant in the tumor environment, the iron oxide nanoparticles undergo reduction, which in turn generates hydroxyl radicals via a Fenton reaction to realize targeted destruction of tumor cells.

View Article and Find Full Text PDF

Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation.

View Article and Find Full Text PDF

The development of multifunctional molecular diagnostic platforms for the concordant visualization and treatment of diseases with high sensitivity and resolution has recently become a crucial strategy in cancer management. Thus, engineering functional metamaterials with high therapeutic and imaging capabilities to elucidate diseases from their morphological behaviors to physiological mechanisms is an unmet need in the current scenario. Here, we report the design of a unique hybrid plasmonic nanoarchitecture for targeted multiple phototherapies of breast cancer by simultaneous real-time monitoring through fluorescence and surface-enhanced Raman scattering (SERS) techniques.

View Article and Find Full Text PDF

We have engineered hybrid polymer products based on a hybrid inorganic-organic comacromer consisting of hydroxyapatite (HA), carboxyl terminated polypropylene fumarate (CTPPF), PEG300 and ascorbic acid (AA) as a bone graft material. The integration and the spatial distribution of HA in the polymer backbone were facilitated by silanisation and 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) coupling technique. These comacromers and crosslinked polymer products were characterized by Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) and Raman mapping techniques.

View Article and Find Full Text PDF