Grain is a common bulk cargo. To ensure optimal utilization of transportation space and prevent overflow accidents, it is necessary to observe the grain's shape and determine the loading status during the loading process. Traditional methods often rely on manual judgment, which results in high labor intensity, poor safety, and low loading efficiency.
View Article and Find Full Text PDFIn this paper, a planning method based on the spatiotemporal variable-step-size A* algorithm is proposed to address the problem of safe trajectory planning for incremental, wheeled, mobile robots in complex motion scenarios with multiple robots. After constructing the known conditions, the spatiotemporal variable-step-size A* algorithm is first used to perform a collision-avoiding initial spatiotemporal trajectory search, and a variable time step is utilized to ensure that the robot completes the search at the target speed. Subsequently, the trajectory is instantiated using B-spline curves in a numerical optimization considering constraints to generate the final smooth trajectory.
View Article and Find Full Text PDFLight Detection and Ranging (LiDAR), a laser-based technology for environmental perception, finds extensive applications in intelligent transportation. Deployed on roadsides, it provides real-time global traffic data, supporting road safety and research. To overcome accuracy issues arising from sensor misalignment and to facilitate multi-sensor fusion, this paper proposes an adaptive calibration method.
View Article and Find Full Text PDF