Stem cell transplantation is proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel is proposed for BMSC transplantation for IDD therapy.
View Article and Find Full Text PDFIndividual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall FeO nanoclusters were developed for tumor-targeted dual-mode T/T-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy.
View Article and Find Full Text PDFAdoptively transferred cells usually suffer from exhaustion, limited expansion, and poor infiltration, partially attributing to the complicated immunosuppressive microenvironment of solid tumors. Therefore, it is necessary to explore more effective strategies to improve the poor tumor microenvironment (TME) to efficaciously deliver and support extrinsic effector cells in vivo. Herein, an intelligent biodegradable hollow manganese dioxide nanoparticle (MnO) that possesses peroxidase activity to catalyze excess HO in the TME to produce oxygen and relieve the hypoxia of solid tumors is developed.
View Article and Find Full Text PDFOsteoarthritis, a chronic degenerative cartilage disease, is the leading cause of movement disorders among humans. Although the specific pathogenesis and associated mechanisms remain unclear, oxidative stress-induced metabolic imbalance in chondrocytes plays a crucial role in the occurrence and development of osteoarthritis. In this study, a trimanganese tetroxide (Mn O ) nanozyme with superoxide dismutase (SOD)-like and catalase (CAT)-like activities is designed to reduce oxidative stress-induced damage and its therapeutic effect is investigated.
View Article and Find Full Text PDFGlioblastoma (GBM) is one of the most fatal central nervous system tumors and lacks effective or sufficient therapies. Ferroptosis is a newly discovered method of programmed cell death and opens a new direction for GBM treatment. However, poor blood-brain barrier (BBB) penetration, reduced tumor targeting ability, and potential compensatory mechanisms hinder the effectiveness of ferroptosis agents during GBM treatment.
View Article and Find Full Text PDFCancellous bone plays an indispensable role in the skeletal system due to its various functions and high porosity. In this work, chitosan and hydroxyapatite nanowires (CS@HAP NWs) hybrid nanostructured scaffolds with suitable mechanical properties, high porosity and a fine porous structure were prepared to simulate the 3-dimensional structure of cancellous bone. The 3D-hybrid scaffolds promote cell adhesion and the migration of human adipose-derived stem cells (hADSCs) inside the scaffolds.
View Article and Find Full Text PDFAlthough there has been significant progress in the development of tumor immunotherapies, many challenges still exist for the treatment of solid tumors. Natural killer (NK) cells possess broad-spectrum cytotoxicity against tumors, but their limited migration and infiltration abilities restrict their application in solid tumor therapies. Here, we combined a facile and efficient magnetic-targeting strategy with NK cell-based therapy to develop a novel immunotherapy approach for treating solid tumors.
View Article and Find Full Text PDFChem Soc Rev
November 2021
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic.
View Article and Find Full Text PDFDirected differentiation enables the production of a specific cell type by manipulating signals in development. However, there is a lack of effective means to accelerate the regeneration of neurons of particular subtypes for pathogenesis and clinical therapy. In this study, we find that hydroxyapatite (HAp) nanorods promote neural differentiation of neural stem cells due to their chemical compositions.
View Article and Find Full Text PDFProinflammatory (M1) macrophages play a vital role in antitumor immunity, and regulation of proinflammatory macrophage polarization is critical for immunotherapy. The polarization of macrophages can be regulated by biological or chemical stimulation, but investigations of the regulatory effect of physical stimulation are limited. Herein, regulating macrophage polarization with localized electrical signals derived from a piezoelectric -phase poly(vinylidene fluoride) (-PVDF) film in a wireless mode is proposed.
View Article and Find Full Text PDFNeural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use.
View Article and Find Full Text PDFSevere bone defects, especially accompanied by vascular and peripheral nerve injuries, remain a massive challenge. Most studies related to bone tissue engineering have focused on osteogenic differentiation of mesenchymal stem cells (MSCs), and ignored the formation of blood vessels and nerves in the newly generated bone owing to the lack of proper materials and methodology for tuning stem cells differentiated into osteogenic, neuronal, and endothelial cells (ECs) in the same scaffold system. Herein, a nanocellulose-reinforced hybrid membrane with good mechanical properties and control over biodegradation by assembling ultralong hydroxyapatite nanobelts in a bacterial nanocellulose hydrogel is designed and synthesized.
View Article and Find Full Text PDFNerve tissues are one of the most difficult tissues to repair due to the limited source of neural stem cells and the difficulty in promoting the neural differentiation of mesenchymal stem cells by growth factors. Electromagnetic field has been proved to have the ability to regulate stem cell differentiation. Although some research studies promoted the neural differentiation of stem cells using an external power source, it is still a big challenge to realize nerve repair in bodies because of the unwieldiness and complexity of the power supply equipment.
View Article and Find Full Text PDFStem cell differentiation plays a significant role in tissue repair and regeneration. The interaction between stem cells and physical signals mediated by materials has significant influence on the fate of stem cells. The utilization of the stimulation originating from material physical properties to promote stem cell differentiation is being developed and has attracted much attention.
View Article and Find Full Text PDFEver-growing tissue regeneration and other stem cell therapies cause pressing need for large population of self-renewable stem cells. However, stem cells gradually lose their stemness after long-term in vitro cultivation. In this study, a ZnO nanorod (ZnO NR) array is used to maintain the stemness of human adipose-derived stem cells (hADSCs).
View Article and Find Full Text PDFThe fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level.
View Article and Find Full Text PDFCell lysis is an important and crucial step for the detection of intracellular secrets. Usually, cell lysis is based on strong ultrasonic waves or toxic chemical regents, which require a large amount of cell suspension. To obtain high efficiency cell lysis for a small amount of sample, a mechanical cell lysis method based on a surface acoustic wave (SAW) microchip is proposed.
View Article and Find Full Text PDFNanoformulations that can respond to the specific tumor microenvironment (TME), such as a weakly acidic pH, low oxygen, and high glutathione (GSH), show promise for killing cancer cells with minimal invasiveness and high specificity. In this study, we demonstrate self-assembled copper-amino acid mercaptide nanoparticles (Cu-Cys NPs) for in situ glutathione-activated and HO-reinforced chemodynamic therapy for drug-resistant breast cancer. After endocytosis into tumor cells, the Cu-Cys NPs could first react with local GSH, induce GSH depletion, and reduce Cu to Cu.
View Article and Find Full Text PDFChimeric antigen receptor T-Cell (CAR-T) immunotherapy has been regarded as one of the most promising methods for cancer therapy. How to verify CAR-T cell function and efficiency is very significant for clinical applications. Meanwhile, the identification of tumor cells/tissues is very important for tumor diagnosis and operation.
View Article and Find Full Text PDFAlthough the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals.
View Article and Find Full Text PDFUnlabelled: Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film.
View Article and Find Full Text PDFNumerous studies have determined that physical cues, especially the nanotopography of materials, play key roles in directing stem cell differentiation. However, most research on nanoarrays for stem cell fate regulation is based on nonbiodegradable materials, such as silicon wafers, TiO, and poly(methyl methacrylate), which are rarely used as tissue engineering biomaterials. In this study, we prepared biodegradable polylactic acid (PLA) nanopillar arrays with different diameters but the same center-to-center distance using a series of anodic aluminum oxide nanowell arrays as templates.
View Article and Find Full Text PDFTransition-metal nitrides have attracted a great deal of interest as electrocatalysts for water splitting due to their super metallic performance, high efficiency, and good stability. Herein, we report a novel design of hierarchical electrocatalyst based on NiFeN, where the presence of carbon fiber cloth as a scaffold can effectively alleviate the aggregation of NiFeN nanostructure and form three-dimensional conducting networks to enlarge the surface area and simultaneously enhance the charge transfer. The composition and morphological variations of NiFe precursors during annealing in different atmospheres were investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
It is well-accepted that most osteogenic differentiation processes do need growth factors assistance to improve efficiency. As a material cue, hydroxyapatite (HAp) can promote osteogenic differentiation of stem cells only in a way. Up to now, rare work related to the relationship between HAp nanostructures and stem cells in osteogenic differentiation process without the assistance of growth factors has been reported.
View Article and Find Full Text PDFTerbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life.
View Article and Find Full Text PDF