Publications by authors named "Jiazhen Xu"

Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex.

View Article and Find Full Text PDF

Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport receptor-mediated endocytosis, which is triggered upon ligand binding.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by abdominal pain, diarrhea, and rectal bleeding. This study aims to explore the protective effects of a phage cocktail (10 PFU/mL of Clostridium perfringens phage, 10 PFU/mL of Escherichia coli phage, and 10 PFU/mL of Salmonella phage) on a mouse colitis model induced by dextran sulfate sodium (DSS) and its potential toxic effects on normal mice. The results demonstrate that the phage cocktail significantly alleviates clinical symptoms in mice, reduces colon shortening, weight loss, and colonic pathological damage.

View Article and Find Full Text PDF

miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease.

View Article and Find Full Text PDF

Given the mounting evidence implicating TDP-43 dysfunction in several neurodegenerative diseases, there is a pressing need to establish accessible tools to sense and quantify TDP-43 loss-of-function (LOF). These tools are crucial for assessing potential disease contributors and exploring therapeutic candidates in TDP-43 proteinopathies. Here, we develop a sensitive and accurate real-time sensor for TDP-43 LOF: the CUTS (CFTR UNC13A TDP-43 Loss-of-Function) system.

View Article and Find Full Text PDF

Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care.

View Article and Find Full Text PDF

Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration.

View Article and Find Full Text PDF

Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study.

View Article and Find Full Text PDF

Proteolysis targeting chimera (PROTAC) technology is a promising new mode of targeted protein degradation with significant transformative implications for the clinical treatment of different diseases. Nevertheless, while this technology offers numerous advantages, on-target off-tumour toxicity in healthy cells remains a major challenge for clinical application in cancer therapy. Strategies are presently being explored to optimize degradation activity with cellular selectivity to minimize undesirable side effects.

View Article and Find Full Text PDF

Tenascin C (TNC), a rich glycoprotein of the extracellular matrix, exhibits a pro-atherosclerosis or anti-atherosclerosis effect depending on its location. TNC, especially its C domain/isoform (TNC-C), is strongly overexpressed in atherosclerotic plaque active areas but virtually undetectable in most normal adult tissues, suggesting that TNC is a promising delivery vector target for atherosclerosis-targeted drugs. Many delivery vectors were investigated by recognizing TNC-C, including G11, G11-iRGD, TN11, PL1, and PL3.

View Article and Find Full Text PDF

Despite the emergence of molecular targeted therapy and immune checkpoint inhibitors as standard first-line treatments for non-small cell lung cancer (NSCLC), their efficacy in some patients is limited by intrinsic and acquired resistance. Antibody-drug conjugates (ADCs), a revolutionary class of antitumor drugs, have displayed promising clinical outcomes in cancer treatment. In 2022, trastuzumab deruxtecan (Enhertu) was approved for treating HER2-mutated NSCLC, thereby underscoring the clinical value of ADCs in NSCLC treatment strategies.

View Article and Find Full Text PDF

Human epithelial growth factor receptor-2 (HER2) plays an oncogenic role in numerous tumors, including breast, gastric, and various other solid tumors. While anti-HER2 therapies are approved for the treatment of HER2-positive tumors, a necessity persists for creating novel HER2-targeted agents to resolve therapeutic resistance. Utilizing a synthetic nanobody library and affinity maturation, our study identified four anti-HER2 nanobodies that exhibited high affinity and specificity.

View Article and Find Full Text PDF

Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years.

View Article and Find Full Text PDF

Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours.

View Article and Find Full Text PDF

Dysregulation of histone modifications has been implicated in the pathogenesis of both inflammatory bowel disease (IBD) and colorectal cancer (CRC). These diseases are characterized by chronic inflammation, and alterations in histone modifications have been linked to their development and progression. Furthermore, the gut microbiota plays a crucial role in regulating immune responses and maintaining gut homeostasis, and it has been shown to exert effects on histone modifications and gene expression in host cells.

View Article and Find Full Text PDF

Salvianolate (Sal) is a medicinal composition that is widely used in China for the treatment of coronary heart disease and angina pectoris. The aim of the present study was to investigate the potential macrophage-mediated pro-angiogenic effects of Sal . In addition, another aim was to explore the effects of Sal in a rat model of transient middle cerebral artery occlusion (tMCAO) along with the potential mechanism by which it promotes angiogenesis.

View Article and Find Full Text PDF

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment.

View Article and Find Full Text PDF

Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes.

View Article and Find Full Text PDF

The incidence and mortality of cervical cancer in female malignancies are second only to breast cancer, which brings a heavy health and economic toll worldwide. Paclitaxel (PTX)-based regimens are the first-class choice; however, severe side effects, poor therapeutic effects, and difficulty in effectively preventing tumor recurrence or metastasis are unavoidable. Therefore, it is necessary to explore effective therapeutic interventions for cervical cancer.

View Article and Find Full Text PDF

SHPL-49 ((2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-(4-methoxyphenyl) butoxy) tetrahydro-2H-pyran-3,4,5-triol) is a novel glycoside derivative obtained from structural modification of salidroside, which is isolated from the medicinal plant Rhodiola rosea L. SHPL-49 was administered to rats with permanent middle cerebral artery occlusion (pMCAO) for 5 days, and it was found that SHPL-49 could alleviate the cerebral infarct volume and reduce the neurological deficit score. Moreover, the effective time window of SHPL-49 in the pMCAO model was from 0.

View Article and Find Full Text PDF

Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Musk is a widely used traditional Chinese medicine, which has resuscitation, activating blood, and disperse swelling effects. Musk is commonly used in the prevention of myocardial infarction and ischemic stroke, and muscone is its main active component.

Aim Of The Study: The effect and mechanism of muscone to improve the condition of ischemic stroke is not clear, accordingly, we verified its efficacy in ischemia-reperfused rats, and investigated its mechanism by PC12 and THP-1 cells.

View Article and Find Full Text PDF
Article Synopsis
  • Main protease (M) is identified as a key target for anti-SARS-CoV-2 drugs, with PF-07304814 serving as a prodrug that gets converted into the active metabolite PF-00835231, which effectively inhibits virus replication.
  • PF-07304814 enhances the bioavailability of PF-00835231 and shows promising preclinical results, including good tolerability and safety, though Phase 1 data is unavailable and further trials were suspended.
  • While several derivatives of PF-00835231 showed varying antiviral potency, compound 22 demonstrated the highest effectiveness but has low solubility, suggesting that new formulations and delivery methods could improve its clinical use.
View Article and Find Full Text PDF

Organisms must either synthesize or assimilate essential organic compounds to survive. The homocysteine synthase Met15 has been considered essential for inorganic sulfur assimilation in yeast since its discovery in the 1970s. As a result, MET15 has served as a genetic marker for hundreds of experiments that play a foundational role in eukaryote genetics and systems biology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8vr6s0k63m0jv99t7e98ejt8rmfa4192): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once