Activating inert substrates is a challenge in nature and synthetic chemistry, but essential for creating functionally active molecules. In this work, we used a combinatorial optimization approach to assemble cytochrome P450 monooxygenases (CYPs) and reductases (CPRs) to achieve a target product profile. By creating 110 CYP-CPR pairs and iteratively screening different pairing libraries, we demonstrated a framework for establishing a CYP network that catalyzes six oxidation reactions at three different positions of a chemical scaffold.
View Article and Find Full Text PDFSilymarin extracted from milk thistle seeds, is used for treating hepatic diseases. Silybin and isosilybin are its main components, and synthesized from coupling of taxifolin and coniferyl alcohol. Here, the biosynthetic pathways of taxifolin and coniferyl alcohol were reconstructed in Saccharomyces cerevisiae for the first time.
View Article and Find Full Text PDFVincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine.
View Article and Find Full Text PDFArtemisinin has been used in the production of "artemisinin combination therapies" for the treatment of malaria. Feeding of precursors has been proven to be one of the most effective methods to enhance artemisinin production in plant cultured cells. At the current paper, the biosynthesis of artemisinin (ART) and its four analogs from dihydroartemisinic acid (DHAA) in suspension-cultured cells of Artemisia annua were investigated.
View Article and Find Full Text PDF