Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe NEMS.
View Article and Find Full Text PDFTwo-dimensional (2D) non-layered materials in many aspects differ from their layered counterparts, and the exploration of their physical properties has produced many intriguing findings. However, due to challenges in applying existing experimental techniques to such nanoscale samples, their thermal properties have remained largely uncharacterized, hindering further exploration and device application using this promising material system. Here, we demonstrate an experimental study of thermal conduction in -InS, a typical non-layered 2D material, using a resonant nanoelectromechanical systems (NEMS) platform.
View Article and Find Full Text PDFThe synthesis of 3-aminopyrrole using the amination reagent nitrosoarenes and homopropargylic amines catalyzed by I through cyclization and amination has been developed. This protocol features excellent functional group tolerance and mild reaction conditions, yielding 3-aminopyrroles in moderate to good yields without a metal catalyst. This method realizes the construction and amination of the 3-aminopyrroles in which nitrosoarenes serve as the amine source and oxidant.
View Article and Find Full Text PDF