The experiment was designed to investigate the effects of different starch types on the growth performance and liver health status of largemouth bass in a high-temperature environment (33-35 °C). In this study, we designed five diets using corn starch (CS), tapioca starch (TS), sweet potato starch (SPS), potato starch (PS), and wheat starch (WS) as the starch sources (10%). We selected 225 healthy and uniformly sized largemouth bass (199.
View Article and Find Full Text PDFThis study was designed to investigate the effects of enzymatically hydrolyzed poultry by-products (EHPB) on the growth and muscle quality of largemouth bass. Different concentrations of EHPB (0.00, 3.
View Article and Find Full Text PDFThis experiment was planned to explore the role of dietary phenylalanine levels in intestinal immunity, antioxidant activity and apoptosis in largemouth bass (). Six iso-nitrogen and iso-energy diets with phenylalanine levels of 1.45% (DPHE1), 1.
View Article and Find Full Text PDFPeripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders.
View Article and Find Full Text PDFThis study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2020
Fatty acid binding proteins (FABPs) are intracellular lipid chaperones with low molecular weight, which are widely distributed in a variety of tissues, participating in fatty acid transport, cell proliferation, and angiogenesis. In this study, full-length sequences of two fabp genes (fabp1 and fabp2) from javelin goby (Synechogobius hasta) were cloned via RACE PCR, followed by bioinformatic analyses and gene expression evaluation. The fabp1 and fabp2 cDNA sequences were 493 and 626 bp in length, encoding 126 and 132 amino acids, respectively.
View Article and Find Full Text PDF