High hydrostatic pressure (HHP) was used to synthesize corn starch (CS) and ferulic acid (FA) complex (CS-FA). Its effects on the structure of the complex at multiple scales and its digestibility were examined. The results demonstrated that HHP significantly influenced the digestibility of the CS-FA complex, decreasing the content of rapidly digestible starch (RDS) while increasing slowly digestible starch (SDS) and resistant starch (RS).
View Article and Find Full Text PDFThis study aimed to investigate the impact of alginate (AG) on the retrogradation properties of corn starch (CS) in conjunction with three phenolic compounds, including naringin (NA), rutin (RT), and soy isoflavones (SI). The findings indicated that AG, NA, RT, and SI collectively resulted in a significant reduction in the hardness, retrogradation enthalpy, and relaxation time of CS gel. This effect was more pronounced when compared to NA, RT, and SI individually.
View Article and Find Full Text PDFOrgan-on-chips can highly simulate the complex physiological functions of organs, exhibiting broad application prospects in developmental research, disease simulation, as well as new drug research and development. However, there is still less concern about effectively constructing cochlea-on-chips. Here, a novel cochlear organoids-integrated conductive hydrogel biohybrid system with cochlear implant electroacoustic stimulation (EAS) for cochlea-on-a-chip construction and high-throughput drug screening, is presented.
View Article and Find Full Text PDFTransition metal carbides and nitrides (MXenes) are crystal nanomaterials with a number of surface functional groups such as fluorine, hydroxyl, and oxygen, which can be used as carriers for proteins and drugs. MXenes have excellent biocompatibility, electrical conductivity, surface hydrophilicity, mechanical properties and easy surface modification. However, at present, the stability of most MXenes needs to be improved, and more synthesis methods need to be explored.
View Article and Find Full Text PDFModification of corn starch using ultrasonic waves to improve its freeze-thaw resistance in frozen model doughs and buns. Analysis was performed by rheometry, low-field-intensity nuclear magnetic resonance imaging, Fourier infrared spectroscopy, and scanning electron microscopy. The results showed that the addition of ultrasonically modified corn starch reduced the migration of water molecules inside the model dough, weakened the decrease of elastic modulus, and enhanced the creep recovery effect; the decrease in α-helical and β-fold content in the model dough was reduced, the destruction of internal network structure was decreased, the exposed starch granules were reduced, and the internal interaction of the dough was enhanced; the texture of the buns became softer and the moisture content increased.
View Article and Find Full Text PDF