Skin and soft-tissue infections require significant consideration because of their prolonged treatment duration and propensity to rapidly progress, resulting in severe complications. The primary challenge in their treatment stems from the involvement of drug-resistant microorganisms that can form impermeable biofilms, as well as the possibility of infection extending deep into tissues, thereby complicating drug delivery. Dissolving microneedle patches are an innovative transdermal drug-delivery system that effectively enhances drug penetration through the stratum corneum barrier, thereby increasing drug concentration at the site of infection.
View Article and Find Full Text PDFThe development of narrow-spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four-armed host-defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P.
View Article and Find Full Text PDFSuperparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment.
View Article and Find Full Text PDFFocal bacterial infections are often difficult to treat due to the rapid emergence of antibiotic-resistant bacteria, high risk of relapse, and severe inflammation at local lesions. To address multidrug-resistant skin and soft tissue infections, a bacteria-absorbing sponge was prepared to involve a "trap-and-kill" mechanism. The system describes a guanidinium-rich lipopeptide functionalized lyotropic liquid-crystalline hydrogel with bicontinuous cubic networks.
View Article and Find Full Text PDFMembrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents.
View Article and Find Full Text PDFEnveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity. Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches, we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects. Herein, a surface-nanoengineered antimicrobial liposome (SNAL) is developed with the morphological features of enveloped viruses, including a moderate size range, lipid-based membrane structure, and highly lipopeptide-enriched bilayer surface.
View Article and Find Full Text PDF