Proc Natl Acad Sci U S A
July 2023
Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/ homolog Auxilin (dAux), is a component in glial autophagy.
View Article and Find Full Text PDFWell-orchestrated transcriptional programs in intestinal epithelial cells (IECs) are essential for maintenance of optimal mucosal barrier functions, whereas the contribution of elongation-related mechanisms to barrier function remains unknown. Here, a combination of genetic and genomic approaches defined a critical role of IEC-intrinsic negative elongation factor (NELF) complex in maintenance of epithelial homeostasis. By direct occupancy at endogenous gene loci, NELF sustained expression of a subset of genes related to junctional integrity.
View Article and Find Full Text PDFIn addition to their established functions in host defense, accumulating evidence has suggested an emerging role for antimicrobial proteins (AMPs) in shaping commensal microbiota. However, the role of α-defensins, the most abundant AMPs of intestine, in regulating microbial ecology remains inconclusive. Here, we report that α-defensins promote commensal colonization by enhancing bacterial adhesion to the mucosal reservoir.
View Article and Find Full Text PDFMetabolic programs and host defense are highly integrated to ensure proper immune responses during stress. Central to these responses, mTOR regulates immune functions by sensing and integrating environmental cues, yet how these systems are coordinated at the intestinal surface remains undefined. We show that the antimicrobial peptide α-defensin is functionally sustained during nutrient deprivation because of regulation of the defensin-processing enzyme MMP7 by microbiota- and host-derived factors.
View Article and Find Full Text PDFFront Mol Neurosci
March 2017
Neuronal activity mediated by voltage-gated channels provides the basis for higher-order behavioral tasks that orchestrate life. Chaperone-mediated regulation, one of the major means to control protein quality and function, is an essential route for controlling channel activity. Here we present evidence that ER chaperone Calnexin colocalizes and interacts with the α subunit of sodium channel Paralytic.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder that exhibits motor and non-motor symptoms, as well as pathological hallmarks, including dopaminergic (DA) neuron death and formation of α-synuclein (α-Syn) Lewy bodies. Cyclin-G-associated kinase (GAK), a PD susceptibility gene identified through genome-wide association studies (GWAS), is a ubiquitous serine/threonine kinase involved in clathrin uncoating, though its PD-related function remains elusive. Here, we implicate the Drosophila GAK homolog, auxilin (aux), in a broad spectrum of parkinsonian-like symptoms.
View Article and Find Full Text PDFNeurons and glia are the two major cell types in the nervous system and work closely with each other to program neuronal interplay. Traditionally, neurons are thought to be the major cells that actively regulate processes like synapse formation, plasticity, and behavioral output. Glia, on the other hand, serve a more supporting role.
View Article and Find Full Text PDFTreatment failure in cancer chemotherapy is largely due to the toxic effects of chemotherapeutic agents on normal cells/tissues. The proteasome inhibitor bortezomib has been successfully applied to treat multiple myeloma (MM), but there are some common adverse reactions in the clinic including peripheral neuropathy (PN). The TAK1 selective inhibitor 5Z-7-oxozeaenol has been widely studied in cancer therapy.
View Article and Find Full Text PDFGlia outnumber neurons and are the most abundant cell type in the nervous system. Whereas neurons are the major carriers, transducers, and processors of information, glial cells, once considered mainly to play a passive supporting role, are now recognized for their active contributions to almost every aspect of nervous system development. Recently, insights from the invertebrate organism Drosophila melanogaster have advanced our knowledge of glial cell biology.
View Article and Find Full Text PDF