A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis-Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared.
View Article and Find Full Text PDF