Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.
View Article and Find Full Text PDFThe transcription factor MYT1L supports proper neuronal differentiation and maturation during brain development. MYT1L haploinsufficiency results in a neurodevelopmental disorder characterized by intellectual disability, developmental delay, autism, behavioral disruptions, aggression, obesity and epilepsy. While MYT1L is expressed throughout the brain, how it supports proper neuronal function in distinct regions has not been assessed.
View Article and Find Full Text PDFMutations reducing the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. MYT1L is used as a pro-neural factor in fibroblast-to-neuron transdifferentiation and is hypothesized to influence neuronal specification and maturation, but it is not clear which neuron types are most impacted by MYT1L loss. In this study, we profile 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient mice at three developmental stages: E14 at the peak of neurogenesis, P1 when cortical neurons have been born, and P21 when neurons are maturing, to examine the role of MYT1L levels on neuronal development.
View Article and Find Full Text PDFAccurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts.
View Article and Find Full Text PDFBackground: Adult pure androgen-secreting adrenal tumors (PASATs) are rarely reported and the malignancy of such tumor are difficult to confirm before surgery. Here we report a PASAT demonstrating extremely F-FDG uptake turned out to benign tumor by postoperative pathology examination.
Case Presentation: A 19-year-old adolescent found a tumor measuring 7.
Aims: Spinal cord injuries (SCI) pose persistent challenges in clinical practice due to the secondary injury. Drawing from our experience in spinal cord fusion (SCF), we propose vascularized allogeneic spinal cord transplantation (vASCT) as a novel approach for SCI, much like organ transplantation has revolutionized organ failure treatment and vascularized composite-tissue allotransplantation has addressed limb defects.
Materials And Methods: In this study, 24 dogs were paired and underwent vASCT, with donor spinal cord grafts and polyethylene glycol (PEG) application for SCF.
Accurate understanding of the biological functions of enzymes is vital for various tasks in both pathologies and industrial biotechnology. However, the existing methods are usually not fast enough and lack explanations on the prediction results, which severely limits their real-world applications. Following our previous work, DEEPre, we propose a new interpretable and fast version (ifDEEPre) by designing novel self-guided attention and incorporating biological knowledge learned via large protein language models to accurately predict the commission numbers of enzymes and confirm their functions.
View Article and Find Full Text PDFWe demonstrate an invertible all-optical gate on chip, with the roles of control and signal switchable by slightly adjusting their relative arrival time at the gate. It is based on the quantum Zeno blockade (QZB) driven by sum-frequency generation (SFG) in a periodically poled lithium niobate microring resonator. For two nearly identical nanosecond pulses, the later arriving pulse is modulated by the earlier arriving one, resulting in 2.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) is a severe impairment of the central nervous system, leading to motor, sensory, and autonomic dysfunction. The present study investigates the efficacy of the polyethylene glycol (PEG)-mediated spinal cord fusion (SCF) techniques, demonstrating efficacious in various animal models with complete spinal cord transection at the T10 level. This research focuses on a comparative analysis of three SCF treatment models in beagles: spinal cord transection (SCT), vascular pedicle hemisected spinal cord transplantation (vSCT), and vascularized allograft spinal cord transplantation (vASCT) surgical model.
View Article and Find Full Text PDFBroadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator.
View Article and Find Full Text PDFHigh-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples.
View Article and Find Full Text PDFMutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a proneural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss.
View Article and Find Full Text PDFBackground: Lung adenocarcinoma is a common malignant tumor, and its early diagnosis and treatment are key to improving patient survival rates. However, due to the non-specific early symptoms, many patients are already at an advanced stage when diagnosed. Non-targeted metabolomics analysis, as a method for comprehensive analysis of metabolites in the body, has been shown to have potential in the early diagnosis of cancer.
View Article and Find Full Text PDFThe surficial cycling of Mg is coupled with the global carbon cycle, a predominant control of Earth's climate. However, how Earth's surficial Mg cycle evolved with time has been elusive. Magnesium isotope signatures of seawater (δMg) track the surficial Mg cycle, which could provide crucial information on the carbon cycle in Earth's history.
View Article and Find Full Text PDFBackground: Body temperature (BT) is routinely measured and can be controlled in critical care settings. BT can impact patient outcome, but the relationship between BT and mortality has not been well-established.
Methods: A retrospective cohort study was conducted based on the MIMIC-IV (N = 43,537) and eICU (N = 75,184) datasets.
The severe water scarcity in China poses significant economic risks to its agriculture, energy, and manufacturing sectors, which can have a cascading effect through the supply chains. Current research has assessed water scarcity losses for global countries and Chinese provinces by using the water scarcity risk (WSR) method. However, this method involves subjective functions and parameter settings, and it fails to capture the adaptive behaviors of economies to water scarcity, compromising the reliability of quantified water scarcity loss.
View Article and Find Full Text PDFOur research demonstrated that novel pentamethylcyclopentadienyl (Cp*) iridium pyridine sulfonamide complex PySONPh-Ir () could highly specifically catalyze nicotinamide adenine dinucleotide (NAD) into the corresponding reducing cofactor NADH in cell growth media containing various biomolecules. The structures and catalytic mechanism of were studied by single-crystal X-ray, NMR, electrochemical, and kinetic methods, and the formation of iridium hydride species Ir-H was confirmed to be the plausible hydride-transfer intermediate of . Moreover, benefiting from its high hydrogen-transfer activity and selectivity for NADH regeneration, was used as an optimal metal catalyst to establish a chem-enzyme cascade catalytic hydrogen-transfer system, which realized the high-efficiency preparation of l-glutamic acid by combining with l-glutamate dehydrogenase (GLDH).
View Article and Find Full Text PDFAn interlayer nanocomposite (CC@rGO) consisting of a graphene heterojunction with CoO and CoS was prepared using a simple and low-cost hydrothermal calcination method, which was tested as a cathode sulfur carrier for lithium-sulfur batteries. The CC@rGO composite comprises a spherical heterostructure uniformly distributed between graphene sheet layers, preventing stacking the graphene sheet layer. After the introduction of cobalt heterojunction on a graphene substrate, the Co element content increases the reactive sites of the composite and improves its electrochemical properties to some extent.
View Article and Find Full Text PDFcellularization is a special form of cleavage that converts syncytial embryos into cellular blastoderms by partitioning the peripherally localized nuclei into individual cells. An early event in cellularization is the recruitment of nonmuscle myosin II ("myosin") to the leading edge of cleavage furrows, where myosin forms an interconnected basal array before reorganizing into individual cytokinetic rings. The initial recruitment and organization of basal myosin are regulated by a cellularization-specific gene, , but the underlying mechanism is unclear.
View Article and Find Full Text PDFCoherence scanning interferometer (CSI) enables 3D imaging with nanoscale precision. However, the efficiency of such a system is limited because of the restriction imposed by the acquisition system. Herein, we propose a phase compensation method that reduces the interferometric fringe period of femtosecond-laser-based CSI, resulting in larger sampling intervals.
View Article and Find Full Text PDFBecause of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform.
View Article and Find Full Text PDFA cascade selenylation/cyclization of dienes with diselenides has been realized under visible-light irradiation or electrolysis conditions. Employing O or electricity as a "green" oxidant, this protocol provides a green and efficient method for an array of biologically important seleno-benzo[]azepine derivatives in moderate to good yields. The direct sunlight irradiation and gram-scale reaction render the approach practical and attractive.
View Article and Find Full Text PDFIn vitro studies indicate the neurodevelopmental disorder gene myelin transcription factor 1-like (MYT1L) suppresses non-neuronal lineage genes during fibroblast-to-neuron direct differentiation. However, MYT1L's molecular and cellular functions in the adult mammalian brain have not been fully characterized. Here, we found that MYT1L loss leads to up-regulated deep layer (DL) gene expression, corresponding to an increased ratio of DL/UL neurons in the adult mouse cortex.
View Article and Find Full Text PDFMotivation: As an important group of proteins discovered in phages, anti-CRISPR inhibits the activity of the immune system of bacteria (i.e. CRISPR-Cas), offering promise for gene editing and phage therapy.
View Article and Find Full Text PDF