In response to the fact that autonomous vehicles cannot avoid obstacles by emergency braking alone, this paper proposes an active collision avoidance method for autonomous vehicles based on model predictive control (MPC). The method includes trajectory tracking, adaptive cruise control (ACC), and active obstacle avoidance under high vehicle speed. Firstly, an MPC-based trajectory tracking controller is designed based on the vehicle dynamics model.
View Article and Find Full Text PDFIn order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle trajectory tracking control system is constructed, and the auxiliary variable and the dual variable are introduced. The quadratic programming problem transformed from the MPC and the vehicle dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty factor is used during the solution process.
View Article and Find Full Text PDF