Publications by authors named "Jiaxuan Wei"

The fifth-generation (5G) wireless communication has an urgent need for target tracking. Digital programmable metasurface (DPM) may offer an intelligent and efficient solution owing to its powerful and flexible controls of electromagnetic waves and advantages of lower cost, less complexity and smaller size than the traditional antenna array. Here, we report an intelligent metasurface system to perform target tracking and wireless communications, in which computer vision integrated with a convolutional neural network (CNN) is used to automatically detect the locations of moving targets, and the dual-polarized DPM integrated with a pre-trained artificial neural network (ANN) serves to realize the smart beam tracking and wireless communications.

View Article and Find Full Text PDF

A bendable transmission line (TL) of spoof surface plasmon polaritons (SSPPs) is presented, which can maintain good transmission performance despite of the deformation caused by bending. Such a TL consists of flexible dielectric substrate and ultrathin metallic strip with zigzag decorations that are designed to support the propagation of SSPPs with strong field confinement and low radiation loss. Furthermore, the proposed SSPP TL is used to excite an amplifier chip efficiently, reaching high and stable gains with nearly no degradation of amplification in the bending states.

View Article and Find Full Text PDF

Decorating metal oxides with wide band-gap semiconductor nano-particles constitute an important approach for synthesizing nano-photocatalysts, where the photocatalytic activity is attributed to the band diagram related effective charge separation and external in-band quantum yield (EIQY). However, up to now, the correlation between the irradiation intensity and the functionalization of the in-band quantum yield has not yet been explained. In this work, by investigating the photocatalytic activity of ZnO and CuO/ZnO (CZO) nano-photocatalysts under various irradiative intensities, we show that the effective charge separation in the CuO/ZnO band alignment is sensitive to weak illumination, while ZnO exhibits a competitive photocatalytic activity with CZO under strong illumination.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations that rely on force field methods has been widely used to explore the structure and function of RNAs. However, the current commonly used force fields are limited by the electrostatic description offered by atomic charge, dipole and at most quadrupole moments, failing to capture the anisotropic picture of electronic features. Actually, the distribution of electrons around atomic nuclei is not spherically symmetric but is geometry dependent.

View Article and Find Full Text PDF

A series of interatomic interactions interpretable as halogen bonds involving I…I, I…O, and I…C(π), as well as the noncovalent interactions I…H and O…O, were observed in the crystal structures of trans-1,2-diiodoolefins dimers according to ab initio calculations and the quantum theory of "atoms in molecules" (QTAIM) method. The interplay between each type of halogen bond and other noncovalent interactions was studied systematically in terms of bond length, electrostatic potential, and interaction energy, which are calculated via ab initio methods at the B3LYP-D3/6-311++G(d,p) and B3LYP-D3/def2-TZVP levels of theory. Characteristics and nature of the halogen bonds and other noncovalent interactions, including the topological properties of the electron density, the charge transfer, and their strengthening or weakening, were analyzed by means of both QTAIM and "natural bond order" (NBO).

View Article and Find Full Text PDF

Molecular force field simulation is an effective method to explore the properties of DNA molecules in depth. Almost all current popular force fields calculate atom-atom electrostatic interaction energies for DNAs based on the atomic charge and dipole or quadrupole moments, without considering high-rank atomic multipole moments for more accurate electrostatics. Actually, the distribution of electrons around atomic nuclei is not spherically symmetric but is geometry dependent.

View Article and Find Full Text PDF