The interfacial mechanical characteristics of sandwich structures are crucial in defining the comprehensive mechanical performance of the whole structure. Nevertheless, in practical applications, the interface often emerges as the weakest segment due to potential defects in the interface of porous metal sandwich plates (PMSP). This study aims to explore the regulatory mechanisms influencing the mechanical characteristics of nano-SiO-reinforced aluminum foam sandwich structure (AFS) interfaces and to propose an effective strategy to achieve AFS interfaces with superior and stable mechanical properties.
View Article and Find Full Text PDFThe aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the most widely used methods to produce AFS due to its general applicability, simple process, and low cost, however, the bonding interface is known as the weak link and may cause a serious accident. To overcome the shortcomings of a bonded AFS interface, short carbon fiber as a reinforcement phase was introduced to epoxy resin to reinforce the interface adhesion strength of AFS.
View Article and Find Full Text PDFConventional two-wavelength algorithms have been broadly used for three-dimensional shape measurement. However, the maximum unambiguous range of phase unwrapping depends on the least-common multiple of two wavelengths, and thus coprime wavelengths are commonly selected. The recently proposed spatial-shifting two-wavelength (SSTW) algorithm can achieve the maximum unambiguous range with two non-coprime wavelengths, but this algorithm tends to fail for some wavelength selections.
View Article and Find Full Text PDF