Publications by authors named "Jiaxiong Lu"

Importance: Inherited retinal dystrophies (IRDs) present a challenge in clinical diagnostics due to their pronounced genetic heterogeneity. Despite advances in next-generation sequencing (NGS) technologies, a substantial portion of the genetic basis underlying IRDs remains elusive. Addressing this gap seems important for gaining insights into the genetic landscape of IRDs, which may help improve diagnosis and prognosis and develop targeted therapies in the future.

View Article and Find Full Text PDF

The development of the retina is under tight temporal and spatial control. To gain insights into the molecular basis of this process, we generate a single-nuclei dual-omic atlas of the human developing retina with approximately 220,000 nuclei from 14 human embryos and fetuses aged between 8 and 23-weeks post-conception with matched macular and peripheral tissues. This atlas captures all major cell classes in the retina, along with a large proportion of progenitors and cell-type-specific precursors.

View Article and Find Full Text PDF

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes.

View Article and Find Full Text PDF

Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.

View Article and Find Full Text PDF

Background: Systematic characterization of how  genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing.

Results: We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types.

View Article and Find Full Text PDF
Article Synopsis
  • * This study investigates whether AAV-based gene therapy can reverse retinal degeneration in these mutant mice by injecting the therapy subretinally to boost CWC27 protein levels.
  • * Results show that treatment with AAV8 significantly improved both the function and structure of the retina, reducing photoreceptor cell loss compared to untreated control mice, suggesting that gene replacement therapy could be an effective treatment for this type of retinal degeneration.
View Article and Find Full Text PDF

Increasing evidence has supported the role of ceramide as a mediator of photoreceptor dysfunction or cell death in ceramide accumulation and deficiency contexts. TLCD3B, a non-canonical ceramide synthase, was previously identified in addition to the six canonical ceramide synthases (CerSs), and the Tlcd3b-/- mouse model exhibited both retinal dysfunction and degeneration. As previous canonical CerS-deficient mouse models failed to display retinal degeneration, the mechanisms of how TLCD3B interacts with CerSs have not been investigated.

View Article and Find Full Text PDF

SPATA7, an early onset LCA3 retinal disease gene, encodes a putative scaffold protein that is essential for the proper assembly of the connecting cilium (CC) complex in photoreceptors. Previous studies have shown that SPATA7 interacts with other photoreceptor-specific ciliary proteins, such as RPGR and RPGRIP1, and maintains the integrity of CC integrity. However, although it is known that Spata7 is required for early formation of the CC, it is unclear if Spata7 is also required for the maintenance of the CC.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to assess the therapeutic efficacy of rAAV8-hGRK1-Tlcd3b in a Tlcd3b-/- mouse model of retinal generation and validate TLCD3B's role as a ceramide synthase in vivo.

Methods: Using Tlcd3b-/- mice as an inherited retinal disease animal model, we performed subretinal injection of rAAV8-hGRK1-Tlcd3b and evaluated the efficacy of gene replacement therapy. Tlcd3b-/- mice were treated at two time points: postnatal day 21 (P21) and postnatal day 120 (P120) with various dosages.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most common extracranial solid tumor in early childhood. Despite intensive multimodal therapy, nearly half of children with high-risk disease will relapse with therapy-resistant tumors. Dysregulation of MAPK pathway has been implicated in the pathogenesis of relapsed and refractory NB patients, which underscores the possibility of targeting MAPK signaling cascade as a novel therapeutic strategy.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial malignant solid tumor in children, and drug resistance is a major reason for poor outcomes. Elevated proteasome activity plays an important role in neuroblastoma tumor development and resistance to conventional chemotherapy. Ubiquitin-specific protease 14 (USP14), one of three deubiquitinases associated with the regulatory subunit of the proteasome, is emerging as a potential therapeutic target in multiple tumor types.

View Article and Find Full Text PDF

Background: Delanzomib, a novel proteasome inhibitor, has demonstrated promising efficacy and antitumor ability in human multiple myeloma cell lines and patient-derived cells. However, the potential therapeutic effects of delanzomib on breast cancer remain unknown. In this study, we show that delanzomib has antitumor effects and synergizes with doxorubicin (Dox) in human breast cancer cell lines.

View Article and Find Full Text PDF

A new Palaearctic species of Haliday (Hymenoptera, Mymaridae), A. (Anagrus) dmitrievi Triapitsyn & Hu, , is described, diagnosed, and illustrated from Xinjiang Uyghur Autonomous Region of China. It was reared from parasitized eggs of the leafhopper Zyginidia (Zyginidia) eremita Zachvatkin (Hemiptera, Cicadellidae) on leaves of maize.

View Article and Find Full Text PDF

Maternal embryonic leucine zipper kinase (MELK) is known to modulate intracellular signaling and control cellular processes. However, the role of MELK in oncogenesis is not well defined. In this study, using two microarray datasets of neuroblastoma (NB) patients, we identified that MELK expression is significantly correlated to poor overall survival, unfavorable prognosis, and high-risk status.

View Article and Find Full Text PDF

Cervical cancer, the third most commonly occurring cancer, is the second leading cause of cancer related mortality among women. Aberrant ubiquitination and proteasome activity, both human papillomavirus and tumor derived, have been shown to contribute to tumor angiogenesis, proliferation, and invasion in many cancers, including cervical cancer. Thus, small molecule proteasome inhibitors are a potential and strategic treatment option for cervical cancer.

View Article and Find Full Text PDF

Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling.

View Article and Find Full Text PDF

Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy.

View Article and Find Full Text PDF

Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53.

View Article and Find Full Text PDF

Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy.

View Article and Find Full Text PDF

Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy.

View Article and Find Full Text PDF

Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is responsible for approximately 15% of cancer-related mortality in children. Aberrant activation of cyclin-dependent kinases (CDKs) has been shown to contribute to tumor cell progression in many cancers including NB. Therefore, small molecule inhibitors of CDKs comprise a strategic option in cancer therapy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9p70ac7phv9n79b4l9u3jptu9bae0rni): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once