Lung microvascular endothelial cell (EC) dysfunction is the pathological hallmark of acute respiratory distress syndrome. Heat shock protein 90 (HSP90) is a key regulator in control of endothelial barrier disruption and inflammation. Our recent study has demonstrated that ubiquitin-specific peptidase 40 (USP40) preserves endothelial integrity by targeting HSP90β for its deubiquitination and inactivation.
View Article and Find Full Text PDFEndothelial cell (EC) barrier disruption and inflammation are the pathological hallmarks of vascular disorders and acute infectious diseases and related conditions, including the coronavirus disease 2019 (COVID-19) and sepsis. Ubiquitination plays a critical role in regulating the stability, intracellular trafficking, and enzymatic activity of proteins and is reversed by deubiquitinating enzymes (DUBs). The role of DUBs in endothelial biology is largely unknown.
View Article and Find Full Text PDFThe excess microvascular endothelial permeability is a hallmark of acute inflammatory diseases. Maintenance of microvascular integrity is critical to preventing leakage of vascular components into the surrounding tissues. Sphingosine-1-phosphate (S1P) is an active lysophospholipid that enhances the endothelial cell (EC) barrier via activation of its receptor S1PR1.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2023
Background: NF-κB (nuclear factor kappa B) plays a pivotal role in endothelial cell (EC) inflammation. Protein ISGylation is regulated by E3 ISG15 (interferon-stimulated gene 15) ligases; however, ISGylation of NF-κBp65 and its role in EC functions have not been investigated. Here, we investigate whether p65 is ISGylated and the role of its ISGylation in endothelial functions.
View Article and Find Full Text PDFGraph neural networks (GNNs) have shown strong graph-structured data processing capabilities. However, most of them are generated based on the message-passing mechanism and lack of the systematic approach to guide their developments. Meanwhile, a unified point of view is hard to explain the design concepts of different GNN models.
View Article and Find Full Text PDFInterleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment.
View Article and Find Full Text PDFProtein ubiquitination regulates protein stability, cellular localization, and enzyme activity. Deubiquitinases catalyze the removal of ubiquitin from target proteins and reverse ubiquitination. USP13, a deubiquitinase, has been shown to regulate a variety of cellular responses including inflammation; however, the molecular regulation of USP13 has not been demonstrated.
View Article and Find Full Text PDFThe Skp1-Cul1-F-box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F-box protein in SCF E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin-proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified.
View Article and Find Full Text PDFThyroid transcription factor 1 (TTF1) regulates the tissue-specific expression of genes. However, the molecular regulation of TTF1 in thyroid normal and carcinoma cells has not been revealed. Here we identify 2 distinct ubiquitin E3 ligases that are responsible for TTF1 degradation in normal thyroid cells and carcinoma cells, respectively.
View Article and Find Full Text PDFAlbumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
View Article and Find Full Text PDF