Publications by authors named "Jiaxiang Xiong"

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration.

View Article and Find Full Text PDF

Dax1 (; Dosage-sensitive sex reversal-adrenal hypoplasia congenital on the X-chromosome gene-1) is an important component of the transcription factor network that governs pluripotency in mouse embryonic stem cells (ESCs). Functional evaluation of alternative splice variants of pluripotent transcription factors has shed additional insight on the maintenance of ESC pluripotency and self-renewal. Dax1 splice variants have not been identified and characterized in mouse ESCs.

View Article and Find Full Text PDF

The pluripotency of embryonic stem cells (ESCs) is more accurately viewed as a continuous developmental process rather than a fixed state. However, the factors that play general or state-specific roles in regulating self-renewal in different pluripotency states remain poorly defined. In this study, parallel genome-wide CRISPR/Cas9 knockout (KO) screens were applied in ESCs cultured in the serum plus LIF (SL) and in the 2i plus LIF (2iL) conditions.

View Article and Find Full Text PDF

Transcriptional enhanced associate domain (TEAD) transcription factors play important roles in embryonic stem cell (ESC) renewal and differentiation. Four TEAD transcription factors (Tead1, Tead2, Tead3 and Tead4) and their various splice variants have been discovered in mice, but the expression pattern of them during pluripotency state transition is unclear. Here, we investigated the expression of TEADs and their splice variants in mouse ESCs at different pluripotent/differentiating states and adult mouse tissues.

View Article and Find Full Text PDF

The mechanisms underlying self-renewal of embryonic stem cells (ESCs) hold great value in the clinical translation of stem cell biology and regenerative medicine research. To study the mechanisms in ESC self-renewal, screening and identification of key genes maintaining ESC self-renewal were performed by a genome-wide CRISPR-Cas9 knockout virus library. The mouse ESC R1 were infected with CRISPR-Cas9 knockout virus library and cultured for 14 days.

View Article and Find Full Text PDF

Hippo signaling pathway is involved in many biological processes including the fate decision of embryonic stem cells (ESCs). Yes-associated protein (Yap) function as a key effector of Hippo pathway, but its role in ESCs is still controversial. So far, only two isoforms of Yap have been identified and they have both overlapping and distinct functions.

View Article and Find Full Text PDF

Dax1(also known as Nr0b1) is regarded as an important component of the transcription factor network in mouse embryonic stem cells (ESCs). However, the role and the molecular mechanism of Dax1 in the maintenance of different pluripotency states are poorly understood. Here, we constructed a stable Dax1 knockout (KO) cell line using the CRISPR/Cas9 system to analyze the precise function of Dax1.

View Article and Find Full Text PDF
Article Synopsis
  • Yap is important for Hippo signaling in embryonic stem cells (ESCs), but its specific roles are still debated.
  • Researchers discovered two splicing isoforms of Yap, Yap472 and Yap488, which have similar expression but different distributions in ESCs.
  • Knocking out both isoforms hinders ESC self-renewal and accelerates their exit from pluripotency, while overexpressing them reverses these effects; each isoform influences different gene expressions and developmental potential, with Yap472 being more crucial for neuroectoderm differentiation.
View Article and Find Full Text PDF

Alternative splicing (AS) is a key process to expand the diversity of mRNA and protein from the genome and it is crucial for fate determination of embryonic stem cells (ESCs) by encoding isoforms with different functions to regulate the balance between pluripotency maintenance and differentiation. Since the role of the Hippo pathway in ESCs is controversial, there may be novel isoforms of Taz, a key effector of the Hippo pathway, previously unknown to us. Here, we identified three variants of Taz in mESCs.

View Article and Find Full Text PDF

Embryonic stem (ES) cells are unique in their ability to self-renew indefinitely while maintaining pluripotency. Krüppel-like factor (Klf) 4 is an important member of the Klf family that is known to play a key role in pluripotency and somatic cell reprogramming. However, the identification and functional comparison of Klf4 splicing isoforms in mouse ESCs (mESCs) remains to be elucidated.

View Article and Find Full Text PDF

Growing evidence supports the notion that lipid metabolism is critical for embryonic stem cell (ESC) maintenance. Recently, α/β-hydrolase domain-containing (ABHD) proteins have emerged as novel pivotal regulators in lipid synthesis or degradation while their functions in ESCs have not been investigated. In this study, we revealed the role of ABHD11 in ESC function using classical loss and gain of function experiments.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) provide an ideal model for investigating developmental processes and are great sources for developing regenerative medicine. Harnessing apoptosis facilitates accurate recapitulation of signalling events during embryogenesis and allows efficient expansion of the ESCs during differentiation. Bcl2, a key regulator of intrinsic anti-apoptotic pathway, encodes two splicing isoforms.

View Article and Find Full Text PDF

The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network.

View Article and Find Full Text PDF

Clearance of amyloid-beta (Aβ) from the brain is an important therapeutic strategy for Alzheimer's disease (AD). Current studies mainly focus on the central approach of Aβ clearance by introducing therapeutic agents into the brain. In a previous study, we found that peripheral tissues and organs play important roles in clearing brain-derived Aβ, suggesting that the peripheral approach of removing Aβ from the blood may also be effective for AD therapy.

View Article and Find Full Text PDF

In dual-wavelength interferometry (DWI), by combing the advantage of the shorter synthetic-wavelength and the immune algorithm of phase ambiguity, we propose an improved phase retrieval method with both high accuracy and large measurement range, which is a pair of contradiction in the reported DWI method. First, we calculate the height of measured object at longer synthetic-wavelength through using the wrapped phases of two single-wavelengths. Second, by combining the immune algorithm of phase ambiguity and the height of measured object at longer synthetic-wavelength, we can perform the phase unwrapping of the larger one of the two single-wavelengths, then achieve accurate height at single-wavelength named as the transition height.

View Article and Find Full Text PDF

A general spatial phase-shifting (GSPS) interferometry method is proposed to achieve phase retrieval from one-frame spatial carrier frequency interferogram. By optimizing the internal signal retrieving function of the spatial phase-shifting (SPS) method, the accuracy, anti-noise ability and speed of phase retrieval can be significantly improved, meanwhile the corresponding local calculation property is reserved. Especially, in the case that the ratio of the spatial carrier to the phase variation rate are small, the proposed method reveals obvious advantage in the accuracy improvement relative to the conventional SPS methods, so the more details of measured sample can be effectively reserved through introducing smaller spatial carrier frequency, and this will facilitate its application in interference microscopy.

View Article and Find Full Text PDF

Combining spatial carrier-frequency phase-shifting (SCPS) technique and Fourier transform method, from one-frame spatial carrier-frequency interferogram (SCFI), a novel phase retrieval method is proposed and applied to dynamic phase measurement. First, using the SCPS technique, four-frame phase-shifting sub-interferograms can be constructed from one-frame SCFI. Second, using Fourier transform method, the accurate phase-shifts of four sub-interferograms can be extracted rapidly, so there is no requirement of calibration for the carrier-frequency in advance compared to most existing SCPS methods.

View Article and Find Full Text PDF

In simultaneous phase-shifting dual-wavelength interferometry, by matching both the phase-shifting period number and the fringe number in interferogram of two wavelengths to the integers, the phase with high accuracy can be retrieved through combining the principle component analysis (PCA) and least-squares iterative algorithm (LSIA). First, by using the approximate ratio of two wavelengths, we can match both the temporal phase-shifting period number and the spatial fringe number in interferogram of two wavelengths to the integers. Second, using above temporal and spatial hybrid matching condition, we can achieve accurate phase shifts of single-wavelength of phase-shifting interferograms through using PCA algorithm.

View Article and Find Full Text PDF

Orexin neurons in the lateral hypothalamus (LH) play an important role in arousal, guaranteeing the execution of medial prefrontal cortex (mPFC)-related higher cognitive functions. The mPFC is anatomically and functionally a rostro-caudal hierarchy. Little is known about the innervation pattern, especially in the rostro-caudal model, from the arousal-promoting orexin system in the LH to the mPFC subregions, including the anterior cingulate cortex (AC), prelimbic cortex (PL) and infralimbic cortex (IL).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood.

View Article and Find Full Text PDF

Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents.

View Article and Find Full Text PDF

In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels.

View Article and Find Full Text PDF