Publications by authors named "Jiaxi Zeng"

Graphene is a potential candidate for achieving high-performance and multifunctional polypropylene (PP) composites. However, the complex manufacturing process and low dispersibility of graphene, as well as poor interfacial adhesion between graphene and polypropylene chains, stifle progress on large-scale production and applications of graphene/polypropylene composites. Here, we develop a strategy of maleic anhydride grafted polypropylene (MAPP) latex-assisted graphene exfoliation and melt blending to address the key challenges facing in industrial production.

View Article and Find Full Text PDF

Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades.

View Article and Find Full Text PDF

We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods.

View Article and Find Full Text PDF

Using a full-dimensional quantum method for nuclei and a new first-principles water potential, we show that the torsional tunneling splitting in a water trimer can be reproduced with accuracy up to ∼1 cm. We quantify the coupling constants of the nuclear quantum states between nonadjacent wells and show that they are the main reason for shifting the quartet-split levels in spectra from a 1:2:1 spacing. This demonstrates the limitation of treatments using simplified models such as the Hückel model and emphasizes the nonlocal nature of the quantum interactions in this system.

View Article and Find Full Text PDF

Rechargeable aqueous zinc-ion batteries (RZIBs) provide a promising complementarity to the existing lithium-ion batteries due to their low cost, non-toxicity and intrinsic safety. However, Zn anodes suffer from zinc dendrite growth and electrolyte corrosion, resulting in poor reversibility. Here, we develop an ultrathin, fluorinated two-dimensional porous covalent organic framework (FCOF) film as a protective layer on the Zn surface.

View Article and Find Full Text PDF