Pangenomes are collections of annotated genome sequences of multiple individuals of a species. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes.
View Article and Find Full Text PDFBananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M.
View Article and Find Full Text PDFNetworks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.
View Article and Find Full Text PDFTranslational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population.
View Article and Find Full Text PDFThe calmodulin binding transcription activator (CAMTA) is a transcription factor that is widely present in eukaryotes with conserved structure. It contributes to the response to biotic and abiotic stresses and promotes the growth and development of plants. Although previous studies have investigated the number and function of CAMTAs in some species, there is still a lack of comprehensive understanding of the evolutionary process, phylogenetic relationship, expression patterns, and functions of CAMTAs in plants.
View Article and Find Full Text PDFHybrids are always a focus of botanical research and have a high practical value in agricultural production. To better understand allele regulation and differences in DNA methylation in hybrids, we developed a phasing pipeline for hybrid rice based on two parental genomes (PP2PG), which is applicable for Iso-Seq, RNA-Seq, and Bisulfite sequencing (BS-Seq). Using PP2PG, we analyzed differences in gene transcription, alternative splicing, and DNA methylation in an allele-specific manner between parents and progeny or different progeny alleles.
View Article and Find Full Text PDFRice (Oryza sativa), a major staple throughout the world and a model system for plant genomics and breeding, was the first crop genome sequenced almost two decades ago. However, reference genomes for all higher organisms to date contain gaps and missing sequences. Here, we report the assembly and analysis of gap-free reference genome sequences for two elite O.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can play important roles in many biological processes. However, no study of the influence of epigenetics factors or the 3D structure of the genome in their regulation is available in plants.
Results: In the current analysis, we identified a total of 15,122 lncRNAs and 7902 circRNAs in three tissues (root, leaf and panicle) in the rice varieties Minghui 63, Zhenshan 97 and their hybrid Shanyou 63.
Background: Influenza is a severe respiratory illness that continually threatens global health. It has been widely known that gut microbiota modulates the host response to protect against influenza infection, but mechanistic details remain largely unknown. Here, we took advantage of the phenomenon of lethal dose 50 (LD) and metagenomic sequencing analysis to identify specific anti-influenza gut microbes and analyze the underlying mechanism.
View Article and Find Full Text PDFBackground: Miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons are ubiquitous in plants genomes, and highly important in their evolution and diversity. However, their mechanisms of insertion/amplification and roles in Citrus genome's evolution/diversity are still poorly understood.
Results: To address this knowledge gap, we developed different computational pipelines to analyze, annotate and classify MITEs and LTR retrotransposons in six different sequenced Citrus species.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
May 2012
Objective: To investigate the possible effects on nervous system and health condition under the exposure to electromagnetic field.
Methods: Take the resident around the power transmission line as the objects and were divided into 3 groups by the distance from the power transmission line 20 m, 100 m and 500 m, respectively. Some living conditions and health conditions were recorded by face-to-face the questionnaire survey, and Hematological indices of each groups were examined including IgG, IgM, leukocyte formulae, erythrocyte, hemoglobin and platelet.
Various biological processes exhibit characteristics that vary dramatically in response to different input conditions or changes in the history of the process itself. One of the examples studied here, the Ras-PKC-mitogen-activated protein kinase (MAPK) bistable pathway, follows two distinct dynamics (modes) depending on duration and strength of EGF stimulus. Similar examples are found in the behavior of the cell cycle and the immune system.
View Article and Find Full Text PDFWe collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2003
The current standard correlation coefficient used in the analysis of microarray data was introduced by M. B. Eisen, P.
View Article and Find Full Text PDF