The aim of this study was to elucidate the specific mechanism through which 7-difluoromethoxy-5,4'-dimethoxygenistein (DFMG) inhibits angiogenesis in atherosclerosis (AS) plaques, given its previously observed but poorly understood inhibitory effects. In vitro, a model using Human Umbilical Vein Endothelial (HUVEC-12) cells simulated the initial lesion in the atherosclerotic pathological process, specifically oxidative stress injury, by exposing cells to 30 μmol/L LPC. Additionally, an AS mouse model was developed in ApoE knockout mice through a 16-week period of high-fat feeding.
View Article and Find Full Text PDFPatients with recurrent or metastatic cervical cancer are in urgent need of novel prognosis assessment or treatment approaches. In this study, a novel prognostic gene signature was discovered by utilizing cuproptosis-related angiogenesis (CuRA) gene scores obtained through weighted gene co-expression network analysis (WGCNA) of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To enhance its reliability, the gene signature was refined by integrating supplementary clinical variables and subjected to cross-validation.
View Article and Find Full Text PDFBackground: Aberrant DNA damage repair (DDR) is one of the hallmarks of tumors, and therapeutic approaches targeting this feature are gaining increasing attention. This study aims to develop a signature of DDR-related genes to evaluate the prognosis of cervical cancer (CC).
Methods: Differentially expressed genes were identified between high and low DDR groups of cells from the single-cell RNA sequencing dataset GSE168652 based on DDR scores.
Cervical cancer ranks first in female reproductive tract tumors in terms of morbidity and mortality. Yet the curative effect of patients with persistent, recurrent or metastatic cervical cancer remains unsatisfactory. Although antitumor angiogenic drugs have been recommended as the first-line treatment options for cervical cancer, there are no comprehensive prognostic indicators for cervical cancer based on angiogenic signature genes.
View Article and Find Full Text PDFTunable diode laser absorption spectroscopy technology (TDLAS) has been widely applied in gaseous component analysis based on gas molecular absorption spectroscopy. When dealing with molecular absorption signals, the desired signal is usually interfered by various noises from electronic components and optical paths. This paper introduces TDLAS-specific signal processing issues and summarizes effective algorithms so solve these.
View Article and Find Full Text PDFHerein, we characterize the Toll-like receptor (TLR)-to-NF-κB innate immune pathway of Orbicella faveolata (Of), which is an ecologically important, disease-susceptible, reef-building coral. As compared to human TLRs, the intracellular TIR domain of Of-TLR is most similar to TLR4, and it can interact in vitro with the human TLR4 adapter MYD88. Treatment of O.
View Article and Find Full Text PDF