The risk factors of upper respiratory tract infection (URI) within 6 months after diagnosis in patients with idiopathic thrombocytopenic purpura (ITP) were analyzed, and the nomogram model was established and verified, with 242 and 50 ITP patients as the training and validation set, respectively. The patients were followed up for six months after the diagnosis of ITP. The clinical data of patients were collected, and the risk factors of URI in ITP patients within six months after diagnosis were analyzed using univariable, followed by multivariable logistic regression.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2013
The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2012
Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5.
View Article and Find Full Text PDFJ Basic Microbiol
February 2013
The bacterium Pseudomonas sp. CGMCC2953, isolated from oil-polluted soil, was used as a recipient for a biodegradative gene encoding catechol 2,3-dioxygenase (C23O), which was successfully cloned into the plasmid pK4 derived from pRK415 with a broad host range. The apparent phenanthrene biodegradation parameters of the recombinant microorganism (Pseudomonas sp.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2010
Catechol-2, 3-dioxygenase (C23O) from Pseudomonas sp. CGMCC2953 identified in our laboratory, which is one of the key enzymes responsible for phenanthrene biodegradation, was expected to get better characteristics tolerant to environment for its further application. With the aim of improving the enzyme properties by introducing intermolecular disulfide bonds, X-ray structure of a C23O from Pseudomonas putida MT-2, a highly conserved homologous with the C23O from Pseudomonas sp.
View Article and Find Full Text PDF