Matched-field processing (MFP) achieves underwater source localization by measuring the correlation between the array and replica signals, with traditional MFP being equivalent to estimating the Euclidean distance between the data cross-spectral density matrix (CSDM) and replica matrices. However, in practical applications, random inhomogeneities in the marine environment and inaccurate estimation of CSDM reduce MFP performance. The traditional minimum variance matched-field processor with environmental perturbation constraints perturbs a priori environment parameters to obtain linear constraints and yields the optimal weight vectors as the replica vectors.
View Article and Find Full Text PDFPassive detection of target-of-interest (TOI) within strong interferences poses a challenge. This paper introduces an adaptive interference suppression based on an invariant subspace of matrix matching. Assume that the TOI-bearing intervals are known.
View Article and Find Full Text PDFFunctionalized sponge adsorbent was prepared by a mussel-inspired strategy, which achieved successive modification of material and remained the properties of substrate. The dopamine derivative, DOPAm, was synthesized and adhered to polyurethane (PU) sponge before in situ polymerization with sodium p-styrenesulfonate. The adsorbent showed superior removal efficiency for cationic dyes (98.
View Article and Find Full Text PDFEnviron Technol
January 2022
Hydrogel material is considered to be one of the effective adsorbents widely used to remove organic pollutants. However, the poor mechanical properties of some hydrogels limit their applications. Herein, we prepared composite hydrogels, for which acrylic acid (AA) and acrylamide (AM) were cross-linked and polymerised as the main substrate with adsorption function, while CdS nanoparticles were mainly used as reinforced material.
View Article and Find Full Text PDFFree radical polymerization is a mature method and can be used for preparing multifunctional hydrogels by simply changing the commercial monomers, but the harsh and time-consuming initiation conditions restrict its injectable ability, which further limits its application in the biomedical field. Though some catalysts can be used to accelerate the polymerization, their application is restrained by the biotoxicity. Hence, finding a biocompatible catalyzer for in situ free radical polymerization of hydrogels has a great prospect in biomedical application but is still challenging.
View Article and Find Full Text PDFRecently emerged hemoperfusion absorbents, e.g. ion-exchange resin, activated carbon, and other porous materials, provide numerous novel possibilities to cure chronic liver failure (CLF) and renal failure (CRF).
View Article and Find Full Text PDF