Iron-deficiency chlorosis is a common nutritional disorder in crops grown on alkaline or calcareous soils. Although the acclimation mechanism to iron deficiency has been investigated, the genetic regulation of iron acquisition is still unclear. Here, by comparing the iron uptake process between the iron-poor-soil-tolerant citrus species Zhique (ZQ) and the iron-poor-soil-sensitive citrus species trifoliate orange (TO), we discovered that enhanced root H efflux is crucial for the tolerance to iron deficiency in ZQ.
View Article and Find Full Text PDFPolyploidy varieties have been reported to exhibit higher stress tolerance relative to their diploid relatives, however, the underlying molecular and physiological mechanisms remain poorly understood. In this study, a batch of autotetraploid were identified from a natural seedling population, and these tetraploid seedlings exhibited greater tolerance to drought stress than their diploids siblings. A global transcriptome analysis revealed that a large number of genes involved in photosynthesis response were enriched in tetraploids under drought stress, which was consistent with the changes in photosynthetic indices including P, gs, T, C, and chlorophyll contents.
View Article and Find Full Text PDFCitrus junos is a widely used citrus grafting rootstock in china because of its excellent tolerance to cold stress. However, the physiological and molecular mechanisms underlying this process remain unknown. In this study, physiological and tandem mass tag-based proteomic analyses were performed to elucidate the mechanism of the Citrus junos response to cold stress.
View Article and Find Full Text PDF