Ultrasound neuromodulation is a promising noninvasive technique capable of penetrating the skull and precisely targeting deep brain regions with millimeter accuracy. Recent studies have demonstrated that transcranial ultrasound stimulation (TUS) of sleep-related brain areas can induce sleep in mice and even trigger a reversible, hibernation-like state without causing damage. Beyond its utility in preclinical models of central nervous system diseases, such as epilepsy, tremors, Alzheimer's disease, and depression, TUS holds significant potential for clinical translation.
View Article and Find Full Text PDFParasitoids often exhibit high flexibility in their development depending on stages of their host at the parasitism, yet little is known about the mechanism underlying such flexibility. In the study, we evaluated the larval development time of the parasitoid Exorista sorbillans (Diptera: Tachinidae) on the lepidopteran model insect Bombyx mori (Lepidoptera: Bombycidae). We found that the development duration of E.
View Article and Find Full Text PDFDelayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases.
View Article and Find Full Text PDFMonoamine dysfunction has been implicated as a pathophysiological basis of several mental disorders, including anxiety and depression. Transcranial ultrasound stimulation (TUS) is a noninvasive nerve stimulation technic showing great potential in treating depression/anxiety disorders. This study aims to investigate whether TUS can ameliorate depression with anxiety in mice by regulating brain monoamine levels.
View Article and Find Full Text PDFUltrasound neuromodulation has become an emerging method for the therapy of neurodegenerative and psychiatric diseases. The phased array ultrasonic transducer enables multi-target ultrasound neuromodulation in small animals, but the relatively large size and mass and the thick cables of the array limit the free movement of small animals. Furthermore, spatial interference may occur during multi-target ultrasound brain stimulation with multiple micro transducers.
View Article and Find Full Text PDFExhaustion of Serotonin (5-hydroxytryptamine, 5-HT) is a typical cause of the depression disorder's development and progression, including depression-like behaviors. Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique treating various neurodegenerative diseases. This study aims to investigate whether TUS ameliorates depression-like behaviors by restoring 5-HT levels.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
July 2022
Traditional Chinese medicine (TCM) is widely used in China, but the large variety can easily lead to difficulties in visual identification. This study aims to evaluate the availability of target detection models to identify TCMs. We have collected images of 100 common TCMs in pharmacies, and use three current mainstream target detection models: Faster RCNN, SSD, and YOLO v5 to train the TCM dataset.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2022
Transcranial focused ultrasound (tFUS) is increasingly used in experimental neuroscience due to its neuromodulatory effectiveness in animal studies. However, achieving multitarget tFUS in small animals is typically limited by transducer size, energy transfer efficiency, and brain volume. The objective of this work was to construct an ultrasound system for multitarget neuromodulation in small animals.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2022
Transcranial ultrasound therapy has become a noninvasive method for treating neurological and psychiatric disorders, and studies have further demonstrated that multitarget transcranial ultrasound therapy is a better solution. At present, multitarget transcranial ultrasound therapy in small animals can only be achieved by the multitransducer or phased array. However, multiple transducers may cause spatial interference, and the phased array system is complicated, expensive, and especially unsuitable for small animals.
View Article and Find Full Text PDF