Publications by authors named "Jiaru Chu"

Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumor. Addressing the clinical management of GBM presents an exceptionally daunting and intricate challenge, particularly in overcoming the blood-brain barrier (BBB) to deliver effective therapies to the brain. Nanotechnology-based drug delivery systems have exhibited considerable promise in tackling this aggressive brain cancer.

View Article and Find Full Text PDF

Magnetic interfacial microrobots are increasingly recognized as a promising approach for potential biomedical applications ranging from electronic functionalization to minimally invasive surgery and targeted drug delivery. Nevertheless, existing research faces challenges, including less cooperative interactions, contact-based cargo manipulation, and slow transport velocity. Here, the cooperative magnetic interfacial microrobot couple (CMIMC) is proposed to address the above challenges.

View Article and Find Full Text PDF

Compact achromats for visible wavelengths are crucial for miniaturized and lightweight full-color endoscopes. Emerging femtosecond laser 3D printing technology offers new possibilities for enhancing the optical performance of miniature imaging lenses on fibers. In this work, we combine refractive and diffractive elements with complementary dispersive properties to create thin, high-performance hybrid achromatic lenses within the visible spectrum, avoiding the use of different optical materials.

View Article and Find Full Text PDF

The characteristics of the directed transport of liquids based on Janus membranes play a crucial role in practical applications in energy, materials, physics, chemistry, medicine, biology, and other fields. Although extensive progress has been made, it is still difficult to realize the accurate controllability of liquid directional transmembrane transport. The current gating strategies for the directed transport of liquids based on Janus membranes still have some limitations: (a) using magnetic fluid may cause contamination due to the addition of new substances and (b) utilizing hydrophobicity/hydrophilicity conversion of titanium dioxide requires a long switching time (over 30 min).

View Article and Find Full Text PDF
Article Synopsis
  • Cell sorting is crucial for areas like cancer diagnosis and drug screening but has challenges in achieving high speed and purity.
  • The proposed system uses impedance detection and dual membrane pumps for label-free, high-accuracy sorting, enabling real-time detection at a rate of 5 × 10 cells per second.
  • In tests, the system sorted cells with an efficiency that increased purity from 28.57% to 97.09% while processing up to 1000 cells per second, showing strong potential for future applications.
View Article and Find Full Text PDF

Anisotropic domains with 180° periodicity are known to be universally present on graphene as well as on other two-dimensional (2D) crystals. The physical origin of the domains and the mechanism of its anisotropy are, however, still unclear. Here, by employing in-plane elastic imaging by torsional resonance atomic force microscopy (TR-AFM), we demonstrate that the observed domains on graphene are of in-plane elastic (shear) anisotropy but not of friction anisotropy as commonly believed.

View Article and Find Full Text PDF

The nature-inspired flexible and re-entrant liquid-superrepellent surface has attracted significant attention due to its excellent superomniphobic performance against low-surface-tension liquids. Although conventional photolithography and molding methods offer the advantage of large-area manufacturing, they often involve multiple double-sided alignment and exposure steps, resulting in complex procedures with long processing cycles. In this study, we proposed a straightforward single-exposure ultraviolet proximity lithography method for re-entrant liquid-superrepellent surface fabrication using a photomask with a coaxial circular aperture and ring.

View Article and Find Full Text PDF

Microbot collectives can cooperate to accomplish complex tasks that are difficult for a single individual. However, various force-induced microbot collectives maintained by weak magnetic, light, and electric fields still face challenges such as unstable connections, the need for a continuous external stimuli source, and imprecise individual control. Here, we construct magnetic and light-driven ant microbot collectives capable of reconfiguring multiple assembled architectures with robustness.

View Article and Find Full Text PDF
Article Synopsis
  • Chiral nanostructures can enhance optical responses, but their design often depends on trial-and-error or complex simulations; a clear strategy has been elusive.
  • This study proposes a new microscopic theory highlighting the importance of reactive helicity density for achieving maximum chirality in resonant nanostructures.
  • The research demonstrates this concept using planar photonic crystals and metasurfaces, providing a framework for creating highly chiral photonic structures, which could advance technologies in chiral sensing and quantum optics.
View Article and Find Full Text PDF

Droplet microfluidics-based single-cell encapsulation is a critical technology that enables large-scale parallel single-cell analysis by capturing and processing thousands of individual cells. As the efficiency of passive single-cell encapsulation is limited by Poisson distribution, active single-cell encapsulation has been developed to theoretically ensure that each droplet contains one cell. However, existing active single-cell encapsulation technologies still face issues related to fluorescence labeling and low throughput.

View Article and Find Full Text PDF

Understanding the mechanics of blisters confined by two-dimensional (2D) materials is of great importance for either fundamental studies or for their practical applications. In this work, we investigate the mechanical properties of nanoscale 2D material blisters using contact-resonance atomic force microscopy (CR-AFM). From the measurement results at the blister centers, the blisters' internal pressures are characterized, which are shown to be inversely proportional to the blisters' sizes.

View Article and Find Full Text PDF

Inspired by the reverse thrust generated by fuel injection, micromachines that are self-propelled by bubble ejection are developed, such as microrods, microtubes, and microspheres. However, controlling bubble ejection sites to build micromachines with programmable actuation and further enabling mechanical transmission remain challenging. Here, bubble-propelled mechanical microsystems are constructed by proposing a multimaterial femtosecond laser processing method, consisting of direct laser writing and selective laser metal reduction.

View Article and Find Full Text PDF

The emerging two-photon polymerization (TPP) technique enables high-resolution printing of complex 3D structures, revolutionizing micro/nano additive manufacturing. Various fast scanning and parallel processing strategies have been proposed to promote its efficiency. However, obtaining large numbers of uniform focal spots for parallel high-speed scanning remains challenging, which hampers the realization of higher throughput.

View Article and Find Full Text PDF

Despite their notable unidirectional water transport capabilities, Janus membranes are commonly challenged by the fragility of their chemical coatings and the clogging of open microchannels. Here, an on-demand mode-switching strategy is presented to consider the Janus functionality and mechanical durability separately and implement them by simply stretching and releasing the membrane. The stretching Janus mode facilitates unidirectional liquid flow through the hydrophilic micropores-microgrooves channels (PG channels) fabricated by femtosecond laser.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetically-actuated microrobots (MARs) are promising for biomedicine due to their precise navigation and remote operation, but many suffer from low magnetic content, limiting their effectiveness.
  • A new high-performance pure-nickel microrobot (Ni-MAR) was developed, featuring about 90% magnetic content, leading to improved magnetic torque and allowing for faster speeds and better cargo carrying capabilities.
  • The Ni-MAR can swim at a maximum velocity of 12.5 body lengths per second, carry a load 200 times its weight, and effectively transport single or multiple cells, making it a strong candidate for targeted therapies and drug delivery.
View Article and Find Full Text PDF

Liquid handling is a necessary act to deal with liquid samples from scientific labs to industry. However, existing pipetting devices suffer from inaccuracy and low precision when dealing with submicroliter liquids, which significantly affect their applications in low-volume quantitation. In this article, we present an automated liquid pipetting device that can aspirate liquid from microplates and dispense nanoliter droplets with high precision.

View Article and Find Full Text PDF

The behavior of cavity collapse in liquids is of fundamental importance in natural and industrial applications. It is still challenging to use the phenomenon of cavity collapse ejection in on-demand droplet printing technology. In this study, we investigate the cavity collapse ejection phenomenon in the submillimeter to millimeter scale and demonstrate that the cavity capillary energy is a critical factor affecting the state of the generated jet.

View Article and Find Full Text PDF

The versatile manipulation of cross-scale droplets is essential in many fields. Magnetic excitation is widely used for droplet manipulation due to its distinguishing merits. However, facile magnetic actuation strategies are still lacked to realize versatile multiscale droplet manipulation.

View Article and Find Full Text PDF

Inspired by the flexible joints of humans, actuators containing soft joints have been developed for various applications, including soft grippers, artificial muscles, and wearable devices. However, integrating multiple microjoints into soft robots at the micrometer scale to achieve multi-deformation modalities remains challenging. Here, we propose a two-in-one femtosecond laser writing strategy to fabricate microjoints composed of hydrogel and metal nanoparticles, and develop multi-joint microactuators with multi-deformation modalities (>10), requiring short response time (30 ms) and low actuation power (<10 mW) to achieve deformation.

View Article and Find Full Text PDF

Fluorescence imaging flow cytometry (IFC) has been demonstrated as a crucial biomedical technique for analyzing specific cell subpopulations from heterogeneous cellular populations. However, the high-speed flow of fluorescent cells leads to motion blur in cell images, making it challenging to identify cell types from the raw images. In this study, we present a real-time single-cell imaging and classification system based on a fluorescence microscope and deep learning algorithm, which is able to directly identify cell types from motion-blur images.

View Article and Find Full Text PDF

The functionality of tunable liquid droplet adhesion is crucial for many applications such as self-cleaning surfaces and water collectors. However, it is still a challenge to achieve real-time and fast reversible switching between isotropic and anisotropic liquid droplet rolling states. Inspired by the surface topography on lotus leaves and rice leaves, herein we report a biomimetic hybrid surface with gradient magnetism-responsive micropillar/microplate arrays (GMRMA), featuring dynamic fast switching toward different droplet rolling states.

View Article and Find Full Text PDF

Bottom-up self-assembly is regarded as an alternative way to manufacture series of microstructures in many fields, especially chiral microstructures, which attract tremendous attention because of their optical micromanipulations and chiroptical spectroscopies. However, most of the self-assembled microstructures cannot be tuned after processing, which largely hinders their broad applications. Here, we demonstrate a promising manufacturing strategy for switchable microstructures by combining the flexibility of femtosecond laser printing induced capillary force self-assembly and the temperature-responsive characteristics of smart hydrogels.

View Article and Find Full Text PDF

Structural color (SC) has enormous potential for improving the visualization and identification of functional micro/nano structures for information encryption and intelligent sensing. Nevertheless, achieving the direct writing of SCs at the micro/nano scale and the change of color in response to external stimuli simultaneously is rather challenging. To this end, we directly printed woodpile structures (WSs) utilizing femtosecond laser two-photon polymerization (fs-TPP), which demonstrated obvious SCs under an optical microscope.

View Article and Find Full Text PDF

In order to reduce the cost of the piezo actuator array deformable mirror (DM), a piezoelectric DM driven by unimorph actuator arrays on multi-spatial layers is proposed. The actuator density can be multiplied by increasing the spatial layers of the actuator arrays. A low-cost DM prototype with 19 unimorph actuators located on three spatial layers is developed.

View Article and Find Full Text PDF

The highly aligned extracellular matrix of metastatic breast cancer cells is considered to be the "highway" of cancer invasion, which strongly promotes the directional migration of cancer cells to break through the basement membrane. However, how the reorganized extracellular matrix regulates cancer cell migration remains unknown. Here, a single exposure of a femtosecond Airy beam followed by a capillary-assisted self-assembly process was used to fabricate a microclaw-array, which was used to mimic the highly oriented extracellular matrix of tumor cells and the pores in the matrix or basement membrane during cell invasion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni69r0lcevm07q9e288gt6dmbk1udr39p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once