Publications by authors named "Jiarou Peng"

In this study, we describe characterization of the human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres. Chitosan-GMA-IDA-Cu(II) nanospheres with diameters of 20 to 100 nm have unique properties due to multifunctional chemical moieties, high surface area, high capacity, good dispersibility in buffer solution as well as good biocompatibility and chemical stability which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanospheres with MS spectrometry results in a novel strategy which should make it possible to characterize the plasma proteome in a single test.

View Article and Find Full Text PDF

Gastric cancer (GC) is the one of the most common types of cancer in Asia. To better understand the molecular mechanisms underlying GC, and to seek new markers of tumor progression, we used a proteomics strategy to analyze the protein expression patterns in matched pairs of GC tissue and normal gastric mucosa of 8 GC patients. Comparative proteomic analysis, using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), revealed that 32 protein spots showed a >2-fold difference in intensity between tumor and normal tissues.

View Article and Find Full Text PDF

Ankylosing spondylitis (AS) is a chronic systemic inflammatory disorder of the axial skeleton and shows significant inherited susceptibility. Auto-immune responses have been traditionally considered as a putative pathogenetic event in AS. However, no consistent self-antigen has been identified to responsible for the disorders in AS to this day.

View Article and Find Full Text PDF

Objective: To identify the different proteins of Helicobacter pylori (H. pylori) in gastric cancer, peptic ulcer, and gastritis initially.

Methods: H.

View Article and Find Full Text PDF

Staphylococcal nuclease (SNase) is a well-established model for protein folding studies. Its three-dimensional structure has been determined. The enzyme, Ca2+, and DNA or RNA substrate form a ternary complex.

View Article and Find Full Text PDF

Recent studies indicate that the N138ND2-Q106O hydrogen bonding deletion in staphylococcal nuclease significantly alters the conformational integrity and stability of the nuclease. To find out the structural basis of the changes, mass spectrometry and limited proteolysis methods were combined to probe the subtle conformational changes in the SNaseN138D mutant and SNaseN138D-Ca2+-pdTp complex. The results reveal that the N138ND2-Q106O hydrogen bonding deletion makes the C-terminal part of alpha-helix 1 and alpha-helix 2 in the C-terminal subdomain of SNaseN138D unfold to some extent, but does not have much effect on the N-terminal part of alpha-helix 1, alpha-helix 3, and the N-terminal beta-barrel subdomain of SNaseN138D.

View Article and Find Full Text PDF