ACS Appl Mater Interfaces
January 2025
Fast-charging lithium-ion batteries (LIBs) are the key to solving the range anxiety of electric vehicles. However, the lack of separators with high Li transportation rates has become a major bottleneck, restricting their development. In this work, the electrochemical performance of traditional polyethylene separators was enhanced by coating AlO nanoparticles with a novel green binder.
View Article and Find Full Text PDFCurrently, there is still an intense demand for a simple and scalable delivery platform for peptide-based cancer vaccines. Herein, a cyclodextrin-based polymer nanovaccine platform (CDNP) is designed for the codelivery of peptides with two immune adjuvants [the Toll-like receptor (TLR)7/8 agonist R848 and the TLR9 agonist CpG] that is broadly applicable to epitope peptides with diverse sequences. Specifically, the cyclodextrin-based polymers are covalently linked to epitope peptides via a bioreactive bond-containing cross-linker (PNC-DTDE-PNC) and then physically load with R848 and CpG to obtain CDNP.
View Article and Find Full Text PDFThe biology and diversity of glomerular parietal epithelial cells (PECs) are important for understanding podocyte regeneration and crescent formation. Although protein markers have revealed the morphological heterogeneity of PECs, the molecular characteristics of PEC subpopulations remain largely unknown. Here, we performed a comprehensive analysis of PECs using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFImmunological checkpoint inhibitors provide a revolutionary method for cancer treatment. However, due to low tumor mutations and insufficient infiltration of immune cells into the tumor microenvironment, 85% of colorectal cancer patients cannot respond to checkpoint blockade immunotherapy. In this study, tumor microenvironment-responsive deformable nanoparticles (DMP@NPs) were rationally designed to improve immunotherapy by synergistically modulating the immune tumor microenvironment.
View Article and Find Full Text PDFNumerous studies have reported the pathogenic roles of C-reactive protein (CRP) and complement activation in diabetic kidney disease (DKD) individually. However, considering the potent regulatory effect of CRP on complement activation, it remains unclear whether CRP participates in DKD pathogenesis by regulating complement activation. Moreover, this work focuses on complement activation in rats, which aims at settling the dispute that whether rat CRP can activate the complement system.
View Article and Find Full Text PDFBackground And Purpose: In chronic kidney disease (CKD), patients inevitably reach end-stage renal disease and require renal transplant. Evidence suggests that CKD is associated with metabolite disorders. However, the molecular pathways targeted by metabolites remain enigmatic.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2019
Early diagnosis of CKD patients at risk for microalbuminuria or macroalbuminuria could facilitate clinical outcomes and long-term survival. Considering the few and limited efficacy of current biomarkers in early detection, we aim to discover plasma lipids that effectively predict the development of CKD paitents with microalbuminuria or macroalbuminuria. A total of 380 healthy controls and 1156 patients with CKD stages 3 to 5 were stratified by urine albumin-creatinine ratio as microalbuminuria (30-300 mg/g) and macroalbuminuria (>300 mg/g).
View Article and Find Full Text PDFEarly detection and accurate monitoring of chronic kidney disease (CKD) could improve care and retard progression to end-stage renal disease. Here, using untargeted metabolomics in 2155 participants including patients with stage 1-5 CKD and healthy controls, we identify five metabolites, including 5-methoxytryptophan (5-MTP), whose levels strongly correlate with clinical markers of kidney disease. 5-MTP levels decrease with progression of CKD, and in mouse kidneys after unilateral ureteral obstruction (UUO).
View Article and Find Full Text PDFBackground/aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression.
View Article and Find Full Text PDFBackground: Although dialysis ameliorates uremia and fluid and electrolytes disorders, annual mortality rate remains high in dialysis population reflecting its shortcoming in replacing renal function. Unlike the normal kidney, dialysis causes dramatic shifts in volume and composition of body fluids and indiscriminate removal of vital solutes. Present study was undertaken to determine the impact of hemodialysis on plasma metabolites in end-stage renal disease (ESRD) patients.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only HO and CO.
View Article and Find Full Text PDFChin J Integr Med
August 2018
Objective: To evaluate the renal protective effect of Tangshenkang Granule () in a rat model of diabetic nephropathy (DN).
Methods: Forty male Sprague-Dawley rats were randomly divided into control, DN, Tangshenkang and benazepril groups. DN model was established in the rats of DN, Tangshenkang and benazepril groups.
Early detection is critical in prevention and treatment of kidney disease. However currently clinical laboratory and histopathological tests do not provide region-specific and accurate biomarkers for early detection of kidney disease. The present study was conducted to identify sensitive biomarkers for early detection and progression of tubulo-interstitial nephropathy in aristolochic acid I-induced rats at weeks 4, 8 and 12.
View Article and Find Full Text PDFChronic kidney disease (CKD) has emerged as a major public health problem worldwide. It frequently progresses to end-stage renal disease, which is related to very high cost and mortality. Novel biomarkers can provide insight into the novel mechanism, facilitate early detection, and monitor progression of CKD and its response to therapeutic interventions.
View Article and Find Full Text PDFBackground: Drug-induced nephrotoxicity was one of the most important health problems, with increasing morbidity and mortality. Urinary metabolomics based on ultra performance liquid chromatography coupled with quadrupole time-of-flight high-definition mass spectrometry was applied to aristolochic acid (AA) nephrotoxicity rats to characterize the excretion pathways of endogenous metabolites.
Results: Compared with the control rats, serum creatinine, serum blood urea nitrogen and urine protein levels were significantly increased in AA nephrotoxicity rats.
Objectives: Aristolochic acid (AA) nephropathy, first reported as Chinese herbs nephropathy, is a rapidly progressive tubulointerstitial nephropathy that results in severe anemia, interstitial fibrosis and end-stage renal disease. Tubulointerstitial injury was studied in a rat model of AA nephropathy to determine whether ergosta-4,6,8(14),22-tetraen-3-one (ergone) treatment prevents early renal injury in rats with aristolochic acid I-induced nephropathy.
Methods: Early renal injury via renal interstitial fibrosis was induced in rats by administration of aristolochic acid I (AAI) solution intragastrically for 8 weeks.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
June 2003
This study is aimed to evaluate the clinical application of the millimeter wave and magnetism light compound therapy. The EHF-98B MMW. RL compound therapy apparatus made in the University of Electronic Technology(Chengdu) was used in 171 patients.
View Article and Find Full Text PDF