To study the properties of cyclotriphosphazene (CTP)-containing phthalonitriles, a branched phthalonitrile containing CTP (CTP-PN) with self-catalytic behavior was designed and synthesized. The structure of CTP-PN was characterized by FT-IR (Fourier transform infrared spectroscopy), MS (mass spectroscopy), H-NMR (proton nuclear magnetic resonance spectroscopy), and C-NMR (carbon nuclear magnetic resonance spectroscopy). Then, the curing reaction of CTP-PN was studied using DSC (differential scanning calorimetry) and DRA (dynamic rheological analysis).
View Article and Find Full Text PDFPhthalonitrile-based resins and benzoxazine play important roles in the field of advanced materials because of their excellent properties. In order to understand the effect of the backbone's structure on the curing kinetics and properties of the multifunctional resin matrices, different kinds of phthalonitrile containing benzoxazine with various backbone structures were designed and prepared. The curing processes and curing behaviors were investigated by differential scanning calorimetry (DSC).
View Article and Find Full Text PDFPolymers (Basel)
August 2024
This article provides an in-depth exploration of the current state of research in microwave-absorbing composite materials, juxtaposing the status quo of coating type and structurally reinforced resin-based composites, with a particular emphasis on the latter's structural and performance superiority. It succinctly elucidates the mechanisms of electromagnetic shielding, as well as the conditions and underlying principles that govern the absorption of microwaves by composite materials. The review continues by dissecting the strategies for enhancing the microwave-absorption capabilities of resin-based composites, including the classification of absorbents, absorbent selection, and an overview of structural design innovations in microwave-absorbing materials.
View Article and Find Full Text PDF