Publications by authors named "Jiaqian Yang"

Article Synopsis
  • Ultrasonic biochemical detection is crucial for identifying biomarkers and monitoring drugs, but current methods are expensive and unreliable, making them unsuitable for low-cost rapid testing.
  • This study introduces a new detection mechanism using Rayleigh scattering from nanoparticles, which alters sound pressure and enhances measurement reliability by modifying antibodies on a separate substrate.
  • Results show that using a CMUT chip, the detection of CA19-9 cancer antigen is successful across various concentrations, while minimizing interference from other markers, proving the effectiveness of this approach.
View Article and Find Full Text PDF

To enhance the superatom family, the new superatom analogue Be of group IVA elements has been developed. Be can exhibit multiple valence states (+2 and +4), similar to carbon-group elements, and is capable of forming stable ionic compounds with other atoms such as carbon, chalcogen, (super)halogen, and hydroxyl. This resembles how tin and lead atoms combine with these elements to form stable molecules.

View Article and Find Full Text PDF

Ultrasonic flowmeter is one of the most widely used devices in flow measurement. Traditional bulk piezoelectric ceramic transducers restrict their application to small pipe diameters. In this paper, we propose an ultrasonic gas flowmeter based on a PZT piezoelectric micromachined ultrasonic transducer (PMUT) array.

View Article and Find Full Text PDF

- and -glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of - and -glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small-molecule peptides that play a vital role in the nonspecific immune defense system of organisms. They mainly kill microorganisms by physically destroying the cell membrane and causing the leakage of contents. AMPs have attracted much attention as potential alternatives to antibiotics due to their low susceptibility to resistance.

View Article and Find Full Text PDF

Glycosylation is an important proteins post-translational modification and is involved in protein folding, stability and enzymatic activity, which plays a crucial role in regulating protein function in plants. Here, we report for the first time on the changes of N-glycoproteome in wheat response to wheat yellow mosaic virus (WYMV) infection. Quantitative analyses of N-linked glycoproteome were performed in wheat without and with WYMV infection by ZIC-HILIC enrichment method combined with LC-MS/MS.

View Article and Find Full Text PDF

Protein glycosylation is of great significance in various physiological processes. Nevertheless, it remains a huge challenge to identify glycopeptides in complex biosamples by the direct mass spectrometry analysis due to the low ion efficiency and low abundance of glycopeptides. In this study, a novel hydrogel (denoted as ZIF-8/SAP) with a stable three-dimensional (3D) network structure and excellent hydrophilicity was successfully fabricated to capture glycopeptides with high efficiency.

View Article and Find Full Text PDF

A bioactive polysaccharide (TS2-2A) with a molecular weight of 15 kDa was isolated from Trametes sanguinea Lloyd, a medicinal food homologous fungus, by water extraction-alcohol precipitation and chromatographic separation. NMR analysis of polysaccharide and MS/MS analysis of its oligosaccharide indicated that TS2-2A featured a novel straight chain with a backbone of 1,3-α-d-glucopyranose and 1,4-β-d-glucopyranose at a molar ratio of 1:4. Moreover, TS2-2A, recognized by Toll-like receptor 4 (TLR4), stimulated RAW 264.

View Article and Find Full Text PDF

A novel hydrophilic porous biocomposite was fabricated by incorporating graphene oxide (GO) @chitosan (CS) foam substrate (GO@CS@ZIF-8 foam) with ZIF-8 crystals in situ via a facile stirring method for simultaneous enrichment of glycopeptides and phosphopeptides from complex biological samples. The experimental results demonstrated that GO@CS@ZIF-8 foam exhibited favorable specificity for simultaneous enrichment of N-glycopeptides and phosphopeptides under the same condition for HRP and β-casein tryptic digest mixtures. The novel material was further applied to enriching both glycopeptides and phosphopeptides simultaneously from 4 μL complex human serum, and 423 N-glycopeptides and 40 phosphopeptides corresponding to 133 glycoproteins and 29 phosphoproteins were identified, respectively.

View Article and Find Full Text PDF

Rationale: Quantitative detection of the FGF-21 biomarker at the sub-nanogram per mL level in human serum has generally been achieved using nanoflow liquid chromatography/tandem mass spectrometry (LC/MS/MS) due to its high sensitivity. However, a nano-LC/MS/MS-based assay can suffer from limited reproducibility and MS signal instability making it challenging to employ it as a robust analytical method for routine clinical applications.

Methods: To tackle these limitations, parallel reaction monitoring (PRM)-based targeted protein quantification using normal-flow liquid chromatography coupled with high-resolution, accurate mass instrumentation was evaluated as a possible alternative.

View Article and Find Full Text PDF

This review presents the developments in artificial intelligence technologies for environmental pollution controls. A number of AI approaches, which start with the reliable mapping of nonlinear behavior between inputs and outputs in chemical and biological processes in terms of prediction models to the emerging optimization and control algorithms that study the pollutants removal processes and intelligent control systems, have been developed for environmental clean-ups. The characteristics, advantages and limitations of AI methods, including single and hybrid AI methods, were overviewed.

View Article and Find Full Text PDF

Interleukin-17A (IL-17A) is a soluble pro-inflammatory cytokine, which is mainly secreted by Th17 cells. In humans, IL-17A mRNA and protein levels are increased in several autoimmune diseases, including psoriasis and rheumatoid arthritis. This study describes the preclinical in vitro and in vivo characterization of GR1501, a human IL-17A-neutralizing IgG4 monoclonal antibody.

View Article and Find Full Text PDF

Electro-oxidation is an effective approach for the removal of 2-chlorophenol from wastewater. The modeling of the electrochemical process plays an important role in improving the efficiency of electrochemical treatment and increasing our understanding of electrochemical treatment without increasing the cost. The backpropagation artificial neural network (BP-ANN) model was applied to predict chemical oxygen demand (COD) removal efficiency and total energy consumption (TEC).

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) is widely distributed in various tissues and highly implicated in several important human diseases, especially Alzheimer's disease (AD). However, the role of BChE in AD is still controversial, which may be partially attributed to the lack of a direct tool for real-time and noninvasive monitoring of BChE in in vivo. Here, we report three rationally designed near-infrared fluorogenic probes that possess excellent discrimination for butyrylcholinesterase (BChE) over the related enzyme acetylcholinesterase (AChE).

View Article and Find Full Text PDF

Inhibitor-1 is converted into a potent inhibitor of native protein phosphatase-1 (PP1) when Thr35 is phosphorylated by cAMP-dependent protein kinase (PKA). However, PKA-phosphorylated form of inhibitor-1 displayed a weak activity in inhibition of recombinant PP1. The mechanism for the impaired activity of PKA-phosphorylated inhibitor-1 toward inhibition of recombinant PP1 remained elusive.

View Article and Find Full Text PDF

We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin.

View Article and Find Full Text PDF