Publications by authors named "Jiaoyi Ning"

Recently, halide perovskites have been recognized for their thermochromic characteristics, showing significant potential in information encryption applications. However, the limited luminescence color gamut hinders the encryption of complex multicolor information. Herein, for the first time, multicolor thermochromic perovskites with luminescence covering the entire visible spectrum have been designed.

View Article and Find Full Text PDF

Stretchable supercapacitors are essential components in wearable electronics due to their low heat generation and seamless integration capabilities. Thermoplastic polyurethane elastomers, recognized for their dynamic hydrogen-bonding structure, exhibit excellent stretchability, making them well-suited for these applications. This study introduces fluorine-based interactions in the hard segments of thermoplastic polyurethanes, resulting in polyurethanes with a low elastic modulus, high fracture strength, exceptional fatigue resistance, and self-healing properties.

View Article and Find Full Text PDF

Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated.

View Article and Find Full Text PDF

The low specific capacity determined by the limited electron transfer of p-type cathode materials is the main obstruction to their application towards high-performance aqueous zinc-ion batteries (ZIBs). To overcome this challenge, boosting multi-electron transfer is essential for improving the charge storage capacity. Here, as a typical heteroaromatic p-type material, we unveil the unique reversible two-electron redox properties of phenoxazine in the aqueous electrolytes for the first time.

View Article and Find Full Text PDF

The traditional methods for creating oxygen vacancies in materials present several challenges and limitations, such as high preparation temperatures, limited oxygen vacancy generation, and morphological destruction, which hinder the application of transition metal oxides in the field of zinc-air batteries (ZABs). In order to address these limitations, we have introduced a pioneering lithium reduction strategy for generating oxygen vacancies in δ-MnO@MXene composite materials. This strategy stands out for its simplicity of implementation, applicability at room temperature, and preservation of the material's structural integrity.

View Article and Find Full Text PDF

Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries.

View Article and Find Full Text PDF

Polymer-based batteries that utilize organic electrode materials are considered viable candidates to overcome the common drawbacks of lithium-sulfur (Li-S) batteries. A promising cathode can be developed using a conductive, flexible, and free-standing polymer, poly(4-thiophen-3-yl)benzenethiol) (PTBT), as the sulfur host material. By a vulcanization process, sulfur is embedded into this polymer.

View Article and Find Full Text PDF