The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L).
View Article and Find Full Text PDFThe consumption of pharmaceuticals-contaminated aquatic products could pose risks to human health, and risk assessments considering bioaccessibility can provide better dietary recommendations. In this study, the bioaccessibility of 6 pharmaceuticals (sulfadiazine (SD), sulfapyridine (SPD), roxithromycin (ROX), tylosin (TYL), diclofenac (DIC) and carbamazepine (CMZP)) in several fish species collected from Shanghai markets was evaluated using in vitro simulated digestion. The total mixed pharmaceuticals concentration in freshwater fish were lower than those in marine fish, and statistics showed that the total concentrations of SD, SPD and CMZP in freshwater fish were significantly lower than those of marine fish (p < 0.
View Article and Find Full Text PDF