Proc Natl Acad Sci U S A
September 2022
Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins.
View Article and Find Full Text PDFThe liver is one of the most-favored distant metastatic sites for solid tumors, and interactions between cancer cells and components of the hepatic microenvironment are essential for liver metastasis (LM). Although sex is one of the determinants for primary liver cancer, sexual dimorphism in LM (SDLM) and the underlying mechanisms remain unclear. We herein demonstrate a significant male-biased SDLM, which is attributed to host androgen/androgen receptor (Ar) signaling that promotes hepatic seeding of tumor cells and subsequent outgrowth in a neutrophil-dependent manner.
View Article and Find Full Text PDFBackground And Aims: 4-phenylbutyric acid (4-PBA) is a low molecular weight fatty acid that is used in clinical practice to treat inherited urea cycle disorders. In previous reports, it acted as a chemical chaperone inhibiting endoplasmic reticulum (ER) stress and unfolded protein response signaling. A few studies have suggested its function against hepatic fibrosis in mice models.
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) proteins are involved in the C-to-U RNA editing of organellar transcripts. The maize genome contains over 600 PPR proteins and few have been found to function in the C-to-U RNA editing in chloroplasts. Here, we report the function of ZmPPR26 in the C-to-U RNA editing and chloroplast biogenesis in maize.
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an () mutant, we identified the function of in mitochondrial intron splicing and seed development in maize.
View Article and Find Full Text PDFJ Plant Physiol
September 2019
The recently identified PPR-E+/NVWA/DYW2 RNA editing complex provides insights into the mechanism of RNA editing in higher plant organelles. However, whether the complex works together with the previously identified editing factors RIPs/MORFs is unclear. In this paper, we identified a maize Smk6 gene, which encodes a mitochondrion-targeted PPR-E+protein with E1 and E2 domains at the C terminus.
View Article and Find Full Text PDF