Background: Immunotherapies, notably immune checkpoints inhibitors that target programmed death 1/programmed death ligand 1(PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), had profoundly changed the way advanced and metastatic cancers are treated and dramatically improved overall and progression-free survival.
Aims: This review article aimed to explore the underlying molecular mechanisms by which the gut microbiota affects antitumor immunity and the efficacy of cancer immunotherapy.
Methods: We summarized the latest knowledge supporting the associations among the gut microbiota, antitumor immunity, and immunotherapy.
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle.
View Article and Find Full Text PDFCancer is difficult to cure due to frequent metastasis, and developing effective therapeutic approaches to treat cancer is urgently important. Long non-coding RNAs (lncRNAs) have diverse roles in regulating gene expression at both the transcriptional and translational levels and have been reported to be involved in tumorigenesis and tumor metastasis. In this article, we review the emerging roles of lncRNAs in cancer, especially in cancer immunity, cancer metabolism and cancer metastasis.
View Article and Find Full Text PDF