Publications by authors named "Jianzhong Song"

Combining organohalide-respiring bacteria with nanoscale zero-valent iron (nZVI) represents a promising approach for remediating chloroethene-contaminated aquifers. However, limited information is available regarding their synergistic dechlorinating ability for chloroethenes when nZVI is sulfidated (S-nZVI) under the organic electron donor-limited conditions typically found in deep aquifers. Herein, we developed a combined system utilizing a mixed culture containing () and S-nZVI particles, which achieved sustainable dechlorination with repeated rounds of spiking with 110 μM perchloroethene (PCE).

View Article and Find Full Text PDF

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects.

View Article and Find Full Text PDF

The DNA damage response (DDR) safeguards the stable genetic information inheritance by orchestrating a complex protein network in response to DNA damage. However, this mechanism can often hamper the effectiveness of radiotherapy and DNA-damaging chemotherapy in destroying tumor cells, causing cancer resistance. Inhibiting DDR can significantly improve tumor cell sensitivity to radiotherapy and DNA-damaging chemotherapy.

View Article and Find Full Text PDF

Excitation-emission matrix (EEM) fluorescence spectroscopy is a widely-used method for characterizing the chemical components of brown carbon (BrC). However, the molecular basics and formation mechanisms of chromophores, which are decomposed by parallel factor (PARAFAC) analysis, are not yet fully understood. In this study, we characterized the water-soluble organic carbon (WSOC) in aerosols collected from Karachi, Pakistan, using EEM spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).

View Article and Find Full Text PDF

The Alhagi honey polysaccharide (AHP) exhibits notable anti-inflammatory, antioxidant, and immunomodulatory properties, positioning it as a promising candidate in traditional Chinese medicine. In this investigation, we successfully isolated and purified a neutral AHP, designated AHPN50-1a, subsequently elucidating its structural attributes. AHPN50-1a was found to have a molecular weight of 1.

View Article and Find Full Text PDF

Biomass burning (BB) releases large amounts of water-soluble organic carbon (WSOC), which would undergo heterogenous oxidation processes that induce transformations in both molecular structures and compositions within BB WSOC. This study designed an aqueous oxidation initiated by OH radicals in the absence of light for WSOC extracted from smoke particles generated by burning of corn straw and fir wood. The BB WSOC was comprehensively characterized using a combination of UV-visible spectra, excitation-emission matrix fluorescence in conjunction with parallel factor analysis (EEM-PARAFAC), high-performance size exclusion chromatography (HPSEC), and high-resolution mass spectrometry (HRMS) analyses.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known.

Aim Of The Study: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action.

View Article and Find Full Text PDF

Emission factors and inventories of black carbon (BC) aerosols are crucial for estimating their adverse atmospheric effect. However, it is imperative to separate BC emissions into char and soot subgroups due to their significantly different physicochemical properties and potential effects. Here, we present a substantial dataset of char and soot emission factors derived from field and laboratory measurements.

View Article and Find Full Text PDF

By targeting the membrane (M) proteins of monkeypox virus (MPXV) strain VEROE6, we analyzed its evolutionary hierarchy and predicted its dominant antigenic B-cell epitope to provide a theoretical basis for the development of MPXV epitope vaccines and related monoclonal antibodies. In this study, phylogenetic trees were constructed based on the nucleic acid sequences of MPXV and the amino acid sequences of M proteins. The 3D structure of the MPXV_VEROE6 M proteins was predicted with AlphaFold v2.

View Article and Find Full Text PDF

Atmospheric brown carbon (BrC) contain amounts of organic species, but their molecular weight (MW) distributions is still poorly understood. This study applied high-performance size exclusion chromatography (HPSEC) coupled with a diode array detector (DAD) and fluorescence detector (FLD) to characterize the MW distributions of typical chromophores and fluorophores within water-soluble BrC. The investigation focused on the spring season, encompassing both typical urban and rural aerosols.

View Article and Find Full Text PDF

N-containing organic compounds (NOCs) in humic-like substances (HULIS) emitted from biomass burning (BB) and coal combustion (CC) were characterized by ultrahigh-resolution mass spectrometry in the positive electrospray ionization mode. Our results indicate that NOCs include CHON+ and CHN+ groups, which are detected as a substantial fraction in both BB- and CC-derived HULIS, and suggest that not only BB but also CC is the potential important source of NOCs in the atmosphere. The CHON+ compounds mainly consist of reduced nitrogen compounds with other oxygenated functional groups, and straw- and coal-smoke HULIS exhibit a lower degree of oxidation than pine-smoke HULIS.

View Article and Find Full Text PDF

The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.

View Article and Find Full Text PDF

Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been banned around the world. However, DDT is still frequently detected in natural environments, particularly in aquaculture and harbor sediments. In this study, 15 surface sediment samples were collected from a typical tropical bay (Zhanjiang Bay) in the South China Sea, and the levels of DDT and its metabolites in sediment and porewater samples were investigated.

View Article and Find Full Text PDF

Fluorescence spectroscopy is a commonly used technique to analyze dissolved organic matter in aquatic environments. Given the high sensitivity and non-destructive analysis, fluorescence has recently been used to study water-soluble organic carbon (WSOC) in atmospheric aerosols, which have substantial abundance, various sources and play an important role in climate change. Yet, current research on WSOC characterization is rather sparse and limited to a few isolated sites, making it challenging to draw fundamental and mechanistic conclusions.

View Article and Find Full Text PDF

Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE), with an average value of 2.

View Article and Find Full Text PDF

It is essential to fully understand the physicochemical properties and sources of atmospheric chromophores to evaluate their impacts on environmental quality and global climate. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy is an important method for directly characterizing the occurrences, origins, and chemical behaviors of atmospheric chromophores. However, there is still a lack of adequate information on the sources and chemical structures of EEM-defined chromophores.

View Article and Find Full Text PDF

Adenylate kinase 2 (AK2), an isoenzyme of the AK family, may have momentous extra-mitochondrial functions, especially in tumourigenesis in addition to the well-known control of energy metabolism. In this study, we provided the first evidence that AK2 is overexpressed in lung adenocarcinoma. The positive expression of AK2 is associated with tumor progression, and poor survival in patients with pulmonary adenocarcinoma.

View Article and Find Full Text PDF

Water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in smoke particles emitted from residential coal combustion were characterized by ultrahigh-resolution mass spectrometry. The results showed that the molecular compositions of WSOC and MSOC are different. S-containing compounds (CHOS and CHONS) are found to be the dominant components (65-87%) of the WSOC, whereas CHO and CHON compounds make a great contribution (79-96%) to the MSOC samples.

View Article and Find Full Text PDF

The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most lethal urological malignancies, yet its pathogenesis remains unclear. Here, we reported a long non-coding RNA (lncRNA), NONHSAT 113026 (NOAT113026), which may play an important role in the pathogenesis of RCC. The expression level of NOAT113026 was estimated by qPCR from 76 pairs of RCC and non-tumor (NT) samples.

View Article and Find Full Text PDF

Sixteen surface sediment samples were collected from the estuary of the Suixi river to the mouth of Zhanjiang Bay and then analyzed for organochlorine pesticides (OCPs) by GC-MS to investigate their distribution and ecological risk. The results showed that the concentrations of OCPs in the sediments ranged from nd to 189.52 ng·g (mean 32.

View Article and Find Full Text PDF

The light absorption and fluorescence characteristics of atmospheric water-soluble organic compounds (WSOC) and humic-like substances (HULIS) during the winter season in Guangzhou were examined using UV-vis spectroscopy and excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). The results showed that the SUVA, HIX, and MAE values of HULIS were higher than those of WSOC, suggesting that the former had higher aromaticity, humification, and light-absorption capacity in winter atmospheric PM in Guangzhou. EEM-PARAFAC analysis identified three fluorescence components, including fulvic-like acid (C1), humic-like acid (C2), and protein-like (C3) components.

View Article and Find Full Text PDF

Brown carbon (BrC) fractions, including water-soluble organic carbon (WSOC), water-soluble humic-like substances (HULIS), alkaline soluble organic carbon (ASOC), and methanol soluble organic carbon (MSOC) were extracted from particles emitted from the residential combustion of coal with different geological maturities. The abundances and light absorption properties of these BrC fractions were comprehensively studied. The results showed that the abundances of the different constituents of the BrC fraction varied greatly with the extraction solvent, accounting for 4.

View Article and Find Full Text PDF