Biomedical ontologies are widely used to harmonize heterogeneous data and integrate large volumes of clinical data from multiple sources. This study analyzed the utility of ontologies beyond their traditional roles, that is, in addressing a challenging and currently underserved field of feature engineering in machine learning workflows. Machine learning workflows are being increasingly used to analyze medical records with heterogeneous phenotypic, genotypic, and related medical terms to improve patient care.
View Article and Find Full Text PDFAlterations in consciousness state are a defining characteristic of focal epileptic seizures. Consequently, understanding the complex changes in neurocognitive networks which underpin seizure-induced alterations in consciousness state is important for advancement in seizure classification. Comprehension of these changes are complicated by a lack of data standardization; however, the use of a common terminological system or ontology in a patient registry minimizes this issue.
View Article and Find Full Text PDFEpilepsy is a common serious neurological disorder that affects more than 65 million persons worldwide and it is characterized by repeated seizures that lead to higher mortality and disabilities with corresponding negative impact on the quality of life of patients. Network science methods that represent brain regions as nodes and the interactions between brain regions as edges have been extensively used in characterizing network changes in neurological disorders. However, the limited ability of graph network models to represent high dimensional brain interactions are being increasingly realized in the computational neuroscience community.
View Article and Find Full Text PDF