Sci Total Environ
November 2024
Industrial wastewater containing high levels of fluoride and phosphate poses significant environmental challenges and results in the waste of non-renewable resources. This study investigates the use of La(OH) as a precipitating agent to selectively remove and separate fluoride from phosphate in such wastewater. The findings indicate that fluoride removal efficiency is highly dependent on the pH level and La(OH) dosage.
View Article and Find Full Text PDFGiven the high toxicity of arsenic (As) and the strategic importance of antimony (Sb), the separation of As and Sb has become a pivotal concern in the disposal of arsenic‑antimony flue dust and other arsenic‑antimony hazardous wastes. In this study, we propose a controlled roasting process employing anthracite and sulfuric acid additives to efficiently separate As and Sb at relatively low temperatures. Thermodynamic calculations revealed that the interactive reactions between arsenic and antimony oxides in conventional pyrometallurgical processes were the primary hindrance to their effective separation.
View Article and Find Full Text PDFHandling flue dust in an environmentally friendly manner has become an urgent task for pollution prevention in the copper industry. Here, driven by the low-carbon notion, we report a process that enables the selective retrieval of multiple metals (As, Cu, Pb, Zn, and Bi) from copper smelting flue dust (CSFD). This process employed low-temperature roasting to separate arsenic from heavy metals, thereby eliminating the tedious separation steps required by existing processes.
View Article and Find Full Text PDFRecovering harmful elements (As, Pb) and metals (Cu, Bi, Zn) from copper smelting flue dust (CSFD) is a critical subject and task for arsenic contamination control and resource sustainability. In this work, a two-step pyrometallurgical process was developed to preferentially separate arsenic and recover metals from CSFD. During the low-temperature roasting, arsenic-bearing waste acid (AWA) from copper industry was used as an additive and effective removal of arsenic (97.
View Article and Find Full Text PDFThe efficient removal and recovery of arsenic from copper smelting flue dust have received widespread attention due to its extremely high toxicity and carcinogenicity. In this research, a roasting method used for treating the dust at a relatively low temperature (300-400 ℃), with adding sulfuric acid and bitumite, was proposed, in which the reduction of As(Ⅴ) and oxidation of arsenic sulfides were achieved simultaneously. It was proved by thermodynamic analysis and experiments that adding sulfuric acid was favorable for the removal of arsenic, through enhancing the thermodynamic driving force and promoting the transformation of arsenate and arsenic sulfides to AsO.
View Article and Find Full Text PDF