Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function.
View Article and Find Full Text PDFDespite the recent emergence of multiple cellular and molecular strategies to restore vision in retinal disorders, it remains unclear to what extent central visual circuits can recover when retinal defects are corrected in adulthood. We addressed this question in an Lrat mouse model of Leber congenital amaurosis (LCA) in which retinal light sensitivity and optomotor responses are partially restored by 9-cis-retinyl acetate administration in adulthood. Following treatment, two-photon calcium imaging revealed increases in the number and response amplitude of visually responsive neurons in the primary visual cortex (V1).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2019
Purpose: Recent evidence suggests that retinal photoreceptor cells have an important role in the pathogenesis of retinal microvascular lesions in diabetes. We investigated the role of rod cell phototransduction on the pathogenesis of early diabetic retinopathy (DR) using Gnat1-/- mice (which causes permanent inhibition of phototransduction in rod cells without degeneration).
Methods: Retinal thickness, oxidative stress, expression of inflammatory proteins, electroretinograms (ERG) and optokinetic responses, and capillary permeability and degeneration were evaluated at up to 8 months of diabetes.
Among trypsin family proteases, bovine and porcine trypsins are currently the enzymes of choice for proteomics applications. However, there are trypsins from other sources that have higher catalytic activities than mammalian trypsins. Of these, Streptomyces erythraeus trypsin (SET) is particularly attractive, because SET has more than 1 order of magnitude greater amidase activity than mammalian trypsin and is resistant to autolytic degradation.
View Article and Find Full Text PDF