The DNA N6-methyladenine (6mA) is an epigenetic modification, which plays a pivotal role in biological processes encompassing gene expression, DNA replication, repair, and recombination. Therefore, the precise identification of 6mA sites is fundamental for better understanding its function, but challenging. We proposed an improved ensemble-based method for predicting DNA N6-methyladenine sites in cross-species genomes called SoftVoting6mA.
View Article and Find Full Text PDFEnhancers are short DNA segments that play a key role in biological processes, such as accelerating transcription of target genes. Since the enhancer resides anywhere in a genome sequence, it is difficult to precisely identify enhancers. We presented a bi-directional long-short term memory (Bi-LSTM) and attention-based deep learning method (Enhancer-LSTMAtt) for enhancer recognition.
View Article and Find Full Text PDFRNA-protein interactions play an indispensable role in many biological processes. Growing evidence has indicated that aberration of the RNA-protein interaction is associated with many serious human diseases. The precise and quick detection of RNA-protein interactions is crucial to finding new functions and to uncovering the mechanism of interactions.
View Article and Find Full Text PDFN4-Acetylcytidine (ac4C) is a highly conserved post-transcriptional and an extensively existing RNA modification, playing versatile roles in the cellular processes. Due to the limitation of techniques and knowledge, large-scale identification of ac4C is still a challenging task. RNA sequences are like sentences containing semantics in the natural language.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets.
View Article and Find Full Text PDF