Publications by authors named "Jianxue Feng"

In this study, a mixed model was applied to the marine medaka to investigate the intergenerational effects of parental exposure to Triphenyltin (TPT) and the subsequent perturbations in parental gut microbiota on the gut microbiota of offspring. In addition, "microgenderome" has been focused on elucidating the different responses of males and females to environmental stress. The results indicated that TPT exhibited androgenic effects and long-term toxicological consequences, influencing the internal steroid hormone levels of the offspring and leading to their abnormal growth and development.

View Article and Find Full Text PDF

The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization.

View Article and Find Full Text PDF

In natural environments, micro/nanoplastics (MNP) inevitably coexist with various pollutants, making it essential to examine their combined toxicity and intergenerational effects on marine organisms. This study investigated the combined toxicity and intergenerational effects of exposure to triphenyltin (T), microplastics (M), nanoplastics (N), a combination of microplastics and triphenyltin (MT), and a combination of nanoplastics and triphenyltin (NT) on marine medaka. The results showed that all treatments had adverse and intergenerational effects on marine medaka.

View Article and Find Full Text PDF

Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field.

View Article and Find Full Text PDF

Biomolecules, prevalent in the marine environment, can readily adsorb onto the surface of micro(nano)plastics (MNPs), forming eco-corona. This study indicated that 50 nm polystyrene nanoplastics (NP50), whether wrapped with eco-corona or not, can passively enter embryos, whereas 5 µm polystyrene microplastics (MP5) cannot. Additionally, translocation of MP5 from the intestine to the liver was observed in larvae, a process facilitated by eco-corona.

View Article and Find Full Text PDF

The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field.

View Article and Find Full Text PDF

With the development of agriculture and industry, an increasing number of pollutants are being discharged into the aquatic environment. These pollutants can harm aquatic life. The behavioral characteristics of animals are an external manifestation of their internal mechanisms.

View Article and Find Full Text PDF

This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star.

View Article and Find Full Text PDF