The main avenue in which antibiotic resistance enters soils is through the application of livestock manure. However, whether antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) persist and spread to vegetables with the application of manure and manure products is still unclear. This study assessed seven kinds of cultured ARB, 221 ARGs subtypes and three transposon genes in the vegetable production chain (from manure to biocompost, soils and vegetables).
View Article and Find Full Text PDFThis work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD's multi-channel functionality. Then, 11 molecules ((+)-catechin, (-)-epicatechin, (-)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (-)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE.
View Article and Find Full Text PDFMembrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here, we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins.
View Article and Find Full Text PDFSince the introduction of imidacloprid in the early 1990s, it has become one of the most widely applied insecticides, and currently represents about 20% of the global pesticide market (Tomizawa, M.; Casida, J. E.
View Article and Find Full Text PDFHesperidin is a flavanone glycoside widely available for dietary intake in citrus fruits or citrus fruit derived products; however, exhaustive and reliable data are scarcely available for biological activity when it exerts protective health effects in humans. The principal intent of this work is to check binding domain and structural changes of human serum albumin (HSA), the primary carrier of flavonoids, in blood plasma association with hesperidin by employing molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) methods. From molecular modeling simulations, subdomains IIA and IIIA, which correspond to Sudlow's sites I and II, respectively, were earmarked to possess affinity for hesperidin, but the affinity of site I with flavanone is greater than that of site II.
View Article and Find Full Text PDFMetalaxyl is an acylamine fungicide, belonging to the most widely known member of the amide group. This task is aimed to scrutinize binding region and spatial structural change of principal vector human serum albumin (HSA) complex with (R)-/(S)-metalaxyl by exploiting molecular modeling, steady-state and time-resolved fluorescence, and circular dichroism (CD) approaches. According to molecular modeling, (R)-metalaxyl is situated within subdomains IIA and IIIA and the affinity of site I with (R)-metalaxyl is greater than site II, whereas (S)-metalaxyl is only located at subdomain IIA and the affinity of (S)-metalaxyl with site I is superior compared with that with (R)-metalaxyl.
View Article and Find Full Text PDFThe complexation between the primary vector of ligands in blood plasma, human serum albumin (HSA) and a toxic anthraquinone dye alizarin complexone, was unmasked by means of circular dichroism (CD), molecular modeling, steady state and time-resolved fluorescence, and UV/vis absorption measurements. The structural investigation of the complexed HSA through far-UV CD, three-dimensional and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing with a reduction of α-helix upon conjugation. From molecular modeling and competitive ligand binding results, Sudlow's site I, which was the same as that of warfarin-azapropazone site, was appointed to retain high-affinity for alizarin complexone.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2012
Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2012
The purpose of the current work was to examine the complexation of a mammalian protein, hemoglobin (Hb) with a food additive hesperidin at physiological conditions. Molecular modeling, fluorescence, and circular dichroism (CD) methods were exploited to analyze the binding domain, affinity, and the effects of hesperidin conjugation on Hb spatial structure. From molecular modeling, central cavity of Hb was assigned to retain high-affinity for hesperidin, this corroborates the steady state fluorescence and hydrophobic ANS probe results.
View Article and Find Full Text PDFAlizarin Red S (ARS), is a water-soluble, widely used anthraquinone dye synthesized by sulfonation of alizarin. In this report, the binding of ARS to human serum albumin (HSA) was characterized by employing fluorescence, UV/vis absorption, circular dichroism (CD), and molecular modeling methods. The data of fluorescence spectra displayed that the binding of ARS to HSA is the formation of HSA-ARS complex at 1:1 stoichiometric proportion.
View Article and Find Full Text PDFBull Environ Contam Toxicol
August 2010