J Phys Condens Matter
December 2024
Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state.
View Article and Find Full Text PDFComposite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS flakes to tens of nanometers and thickness to less than ten nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.
View Article and Find Full Text PDFMagnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FeX (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMnSn (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question.
View Article and Find Full Text PDFNon-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet FeGeTe.
View Article and Find Full Text PDFDigital mask projection lithography (DMPL) technology is gaining significant attention due to its characteristics of free-mask, flexibility, and low cost. However, when dealing with target layouts featuring sizes smaller than the wavelength scale, accurately producing resist patterns that closely match the target layout using conventional methods to design the modulation coefficients of digital masks produced by spatial light modulators (SLM) becomes challenging. Here, we present digital inversion lithography technology (DILT), which offers what we believe to be a novel approach to reverse engineer the modulation coefficients of digital masks.
View Article and Find Full Text PDFIn this paper, we present a novel approach for calculating the heat distribution within a processed workpiece subjected to laser irradiation while accounting for the influence of bottom water vapor. A comprehensive mathematical model is introduced and numerical techniques using difference approximation are employed. Initially, the three-dimensional heat equation, originally defined in the rectangular coordinate system, is transformed into a corresponding model within the cylindrical coordinate system, incorporating a nonlinear boundary condition to account for coupling effects.
View Article and Find Full Text PDFJ Environ Sci (China)
April 2024
The high content of aluminum (Al) impurity in the recycled cathode powder seriously affects the extraction efficiency of Nickel, Cobalt, Manganese, and Lithium resources and the actual commercial value of recycled materials, so Al removal is crucially important to conform to the industrial standard of spent Li-ion battery cathode materials. In this work, we systematically investigated the leaching process and optimum conditions associated with Al removal from the cathode powder materials collected in a wet cathode-powder peeling and recycling production line of spent Li-ion batteries (LIBs). Moreover, we specifically studied the leaching of fluorine (F) synergistically happened along with the removal process of Al, which was not concerned about in other studies, but one of the key factors affecting pollution prevention in the recovery process.
View Article and Find Full Text PDFExisting studies have recognized the significance of leadership ability on enterprises' digital transformation. However, few of them pay attention to the mechanism of flexible leadership ability (FLA) on digital transformation willingness (DTW). This study aims to explore the influence mechanism of FLA on DTW based on the ability-behavior-purpose logical framework.
View Article and Find Full Text PDFWe study the interplay between electronic correlations and hybridization in the low-energy electronic structure of CaMn[Formula: see text]Bi[Formula: see text], a candidate hybridization-gap semiconductor. By employing a DFT+U approach we find both the antiferromagnetic Néel order and band gap in good agreement with the corresponding experimental values. Under hydrostatic pressure, we find a crossover from hybridization gap to charge-transfer insulting physics due to the delicate balance of hybridization and correlations.
View Article and Find Full Text PDFPurpose: Severe traumatic brain injury (TBI) leads to acute coma and may result in prolonged disorder of consciousness (pDOC). We aimed to determine whether right median nerve electrical stimulation is a safe and effective treatment for accelerating emergence from coma after TBI.
Methods: This randomised controlled trial was performed in 22 centres in China.
Defect engineering of van der Waals semiconductors has been demonstrated as an effective approach to manipulate the structural and functional characteristics toward dynamic device controls, yet correlations between physical properties with defect evolution remain underexplored. Using proton irradiation, we observe an enhanced exciton-to-trion conversion of the atomically thin WS. The altered excitonic states are closely correlated with nanopore induced atomic displacement, W nanoclusters, and zigzag edge terminations, verified by scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy.
View Article and Find Full Text PDFMagnetic proximity interactions between atomically thin semiconductors and two-dimensional magnets provide a means to manipulate spin and valley degrees of freedom in non-magnetic monolayers, without using applied magnetic fields. In such van der Waals heterostructures, magnetic proximity interactions originate in the nanometre-scale coupling between spin-dependent electronic wavefunctions in the two materials, and typically their overall effect is regarded as an effective magnetic field acting on the semiconductor monolayer. Here we demonstrate that magnetic proximity interactions in van der Waals heterostructures can in fact be markedly asymmetric.
View Article and Find Full Text PDFNeural network-based inverse lithography technology (NNILT) has been used to improve the computational efficiency of large-scale mask optimization for advanced photolithography. NNILT is now mostly based on labels, and its performance is affected by the quality of labels. It is difficult for NNILT to achieve high performance and extrapolation ability for mask optimization without using labels.
View Article and Find Full Text PDFRecent investigations indicate that β2-adrenergic receptor (β2-AR) signaling may facilitate the progression of various tumors, whose underlying mechanisms remain largely elusive. In the present study, we showed that β2-AR recruited Cdc42 in response to isoproterenol (ISO, a β-AR selective agonist) exposure in pancreatic ductal adenocarcinoma (PDAC) cells. The association of β2-AR and Cdc42 promoted the activation of Cdc42, as revealed by increased levels of Cdc42-GTP, and co-incubation with β2-AR antagonist abrogated ISO-induced activation of Cdc42.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2021
Recent advances in nanoscience have opened ways of recycling substrates for nanomaterial growth. Novel materials, such as atomically thin materials, are highly desirable for the recycling substrates. In this work, we report recycling of monolayer graphene as a growth template for synthesis of single crystalline ZnO nanowires.
View Article and Find Full Text PDFPrevious studies have shown aberrant expression of ubiquitin-specific protease 14 (USP14) in multiple malignancies, suggesting an important role of USP14 in tumorigenesis. However, the functional role of USP14 in pancreatic ductal adenocarcinoma (PDAC) has never been elucidated. In this study, we found that USP14 was remarkably upregulated in PDAC tissues compared with normal pancreatic tissues.
View Article and Find Full Text PDFSpin-triplet superconductors are of extensive current interest because they can host topological state and Majorana fermions important for quantum computation. The uranium-based heavy-fermion superconductor UTe_{2} has been argued as a spin-triplet superconductor similar to UGe_{2}, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that, although UTe_{2} exhibits no static magnetic order down to 0.
View Article and Find Full Text PDFBackground: Deep venous thrombosis (DVT) is a common postoperative complication in patients with lower limb fractures. This study aims to investigate the predictive value of plasminogen activator inhibitor-1 (PAI-1), fibrinogen (FIB), and D-dimer (D-D) for DVT following lower limb traumatic fracture surgery and to investigate risk factors for DVT.
Methods: Clinical data of 63 patients who underwent lower limb traumatic fracture surgery in our hospital from September 2018 to March 2019 were retrospectively analyzed.
The prediction of non-trivial topological electronic states in half-Heusler compounds makes these materials good candidates for discovering new physics and devices as half-Heusler phases harbour a variety of electronic ground states, including superconductivity, antiferromagnetism, and heavy-fermion behaviour. Here, we report a systematic studies of electronic properties of a superconducting half-Heusler compound YPtBi, in its normal state, investigated using angle-resolved photoemission spectroscopy. Our data reveal the presence of a Dirac state at the [Formula: see text] point of the Brillouin zone at 500 meV below the Fermi level.
View Article and Find Full Text PDFUsing the density functional theory combined with dynamical mean-field theory, we have performed systematic study of the electronic structure and its band topology properties of Ce_{3}Pt_{3}Bi_{4} and Ce_{3}Pd_{3}Bi_{4}. At high temperatures (∼290 K), the electronic structures of both compounds resemble the open-core 4f density functional calculation results. For Ce_{3}Pt_{3}Bi_{4}, clear hybridization gap can be observed below 72 K, and its coherent momentum-resolved spectral function below 18 K exhibits an topologically trivial indirect gap of ∼6 meV and resembles density functional band structure with itinerant 4f state.
View Article and Find Full Text PDF