Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects.
View Article and Find Full Text PDFSynth Syst Biotechnol
September 2024
Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production.
View Article and Find Full Text PDFProteins play a pivotal role in coordinating the functions of organisms, essentially governing their traits, as the dynamic arrangement of diverse amino acids leads to a multitude of folded configurations within peptide chains. Despite dynamic changes in amino acid composition of an individual protein (referred to as AAP) and great variance in protein expression levels under different conditions, our study, utilizing transcriptomics data from four model organisms uncovers surprising stability in the overall amino acid composition of the total cellular proteins (referred to as AACell). Although this value may vary between different species, we observed no significant differences among distinct strains of the same species.
View Article and Find Full Text PDFGene expression in bacteria is regulated by multiple transcription factors. Clarifying the regulation mechanism of gene expression is necessary to understand bacterial physiological activities. To further understand the structure of the transcriptional regulatory network of Corynebacterium glutamicum, we applied independent component analysis, an unsupervised machine learning algorithm, to the high-quality C.
View Article and Find Full Text PDF