Publications by authors named "Jianxiang Shen"

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO model demonstrate that 12 wt % CaCO modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains.

View Article and Find Full Text PDF

In this work, the structural and dynamical properties of thermoplastic polyurethane (TPU)/fullerene (C) nanocomposites are investigated using atomistic molecular dynamics simulations, focusing on the glass transition, thermal expansion, polymer mobility, polymer-C interactions, and diffusion behavior of C. The results show a slight increase in the glass transition temperature () with increasing C weight fraction (wt%), attributed to hindered polymer dynamics, and a remarkable reduction in the coefficient of thermal expansion above . Results of the mean squared displacement and the time decay of bond-reorientation autocorrelation indicate that the mobility of TPU hard segments is more restricted than that of soft segments, owing to the electrostatic attractions and the π-π stacking between isocyanate groups and C molecules.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) and thermoplastic polyurethane (TPU) nanocomposites have emerged as promising materials for various applications in the field of nanotechnology. An understanding of the thermodynamic and structural properties is of fundamental significance in designing and fabricating CNT/TPU nanocomposites with desired properties. To this end, this work has employed atomistic molecular dynamics (MD) simulations to study the thermal properties and interfacial characteristics of TPU composites filled with pristine or functionalized single-walled carbon nanotubes (SWNTs).

View Article and Find Full Text PDF

Assessing biomass resource potential is essential for China's ambitious goals of carbon neutrality, rural revitalization, and poverty eradication. To fill the data gap of high spatial resolution biomass resources in China, this study estimates the biomass resource potential for all types of lignocellulosic biomass feedstock at 1 km resolution in 2018, including 9 types of agricultural residues, 11 types of forestry residues, and 5 types of energy crops. By combining the statistical accounting method and the GIS-based method, this study develops a transparent and comprehensive assessment framework, which is in accordance with the principle of food security, forest land and pasture protection, and biodiversity protection.

View Article and Find Full Text PDF

Incorporating health cobenefits from coabated air pollution into carbon mitigation policy making is particularly important for developing countries to boost policy efficiency. For sectors that highly depend on electrification for decarbonization, it remains unclear how the increased electricity demand and consequent health impacts from sectoral mitigation policy in one province would change the scale and the regional and sectoral distributions of the overall health impacts in the whole country. This study chooses the banning of new sales of internal combustion engine vehicles in the private vehicle sector in China as a case.

View Article and Find Full Text PDF

A novel bio-based thermoplastic vulcanizate (TPV) material consisting of poly(lactic acid) (PLA) and a novel polymeric slide ring material (SeRM) was fabricated isocyanate-induced dynamic vulcanization. The microscopic morphology, thermal properties, biocompatibility, and mechanical properties of the SeRM/PLA TPV material were comprehensively investigated, in turn by transmission electron microscopy, differential scanning calorimetry, cytotoxicity test, electron tension machine, and molecular dynamics simulations. Phase inversion in TPV was observed during the dynamic vulcanization, and TEM images showed that SeRM particles that were dispersed in PLA continuous phase had an average diameter of 1-4 μm.

View Article and Find Full Text PDF

In this study, two-dimensional TiC nanosheets were employed to improve the tribological and thermo-mechanical properties of epoxy resin. The TiC nanosheets were prepared by ultrasound-assisted delamination of multilayered TiC microparticles, and the TiC nanosheets/epoxy (TiC/epoxy) nanocomposites were fabricated through physical blending and curing reaction. Scanning electron microscopy results showed that the TiC nanosheets were dispersed uniformly in the epoxy matrix.

View Article and Find Full Text PDF

Fully understanding the mechanism by which nanoparticles (NPs) strengthen polymer matrices is crucial for fabricating high-performance polymer nanocomposites (PNCs). Herein, coarse-grained molecular dynamics simulations were adopted to explicitly investigate the reinforcing effect of a NP network. Our results revealed that increasing the NP-NP interactions induced the self-assembly of NPs into a three-dimensional (3D) network that reinforced the polymer matrix.

View Article and Find Full Text PDF

The micromorphology of fillers plays an important role in tribological and mechanical properties of polymer matrices. In this work, a TiO-decorated TiC (TiO/TiC) composite particle with unique micro-nano morphology was engineered to improve the tribological and thermo-mechanical properties of epoxy resin. The TiO/TiC were synthesized by hydrothermal growth of TiO nanodots onto the surface of accordion-like TiC microparticles, and three different decoration degrees (low, medium, high density) of TiO/TiC were prepared by regulating the concentration of TiO precursor solution.

View Article and Find Full Text PDF

Arsenic (As) and cadmium (Cd) are common soil pollutants whose opposing geochemical behaviors must be taken into account in the development of cost-effective, environmentally friendly remediation strategies. In this study, a pot experiment with lettuce and a field experiment with wheat were performed to examine the impacts of zeolite, biochar, MnO, zero-valent iron (ZVI) individually and in binary combinations thereof on As-Cd pollution. The results of the pot experiment showed that biochar, MnO and ZVI had good passivation effects on As and Cd when provided individually, but the effects of a combination of 0.

View Article and Find Full Text PDF

Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size.

View Article and Find Full Text PDF

The improvement of mechanical properties of polymer nanocomposites (PNCs) has been studied for many years, with the main focus on the structure of the nanofillers. Much less effort has been devoted to unraveling the factors controlling the structure of the grafted chains. Herein, through coarse-grained molecular-dynamics simulations, we have successfully fabricated an ideal, mechanically-interlocked composite structure composed of end-functionalized chains grafted to the nanoparticle surface forming rings and making the matrix chains thread through these rings.

View Article and Find Full Text PDF

Through coarse-grained molecular dynamics simulation, we have successfully designed the chemically cross-linked (fixed junction) and the slide-ring (SR) systems. Firstly, we examine the dynamic properties such as the mean-square displacement, the bond, and the end-to-end autocorrelation functions as a function of the cross-linking density, consistently pointing out that the SR system exhibits much lower mobility compared with the fixed junction one at the same cross-linking density. This is further validated by a relatively higher glass transition temperature for the SR system compared with that of the fixed junction one.

View Article and Find Full Text PDF

Establishing the Time-Temperature and Frequency-Temperature Superposition Principles (TTSP and FTSP) to describe the mechanical behavior of polymeric materials is always of paramount significance. In this work, by adopting the classic coarse-grained model, we investigate the validity of these superposition principles for a series of networks, such as the pure polymer network, interpenetrating polymer networks composed of stiff and flexible networks (IPNs-SF), interpenetrating polymer networks composed of different cross-linking networks (IPNs-DC), polymer nanocomposites (PNCs), and surface grafted modified PNCs. The study focuses on the three critical mechanical properties such as the stress relaxation, the storage modulus versus the frequency obtained from the dynamic periodic shear deformation, and the uniaxial tensile stress-strain.

View Article and Find Full Text PDF

Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior.

View Article and Find Full Text PDF

In this paper we adopt molecular dynamics simulations to study the amphiphilic AB block copolymer (BCP) mediated nanoparticle (NP) dispersion in polymer nanocomposites (PNCs), with the A-block being compatible with the NPs and the B-block being miscible with the polymer matrix. The effects of the number and components of BCP, as well as the interaction strength between A-block and NPs on the spatial organization of NPs, are explored. We find that the increase of the fraction of the A-block brings different dispersion effect to NPs than that of B-block.

View Article and Find Full Text PDF

Introducing carbon nanotubes or graphene sheets into polymer matrices has received lots of scientific and technological attention. For the first time, we report a new kind of polymer nanocomposite (PNC) by means of employing anisotropic nanoparticles (NPs) as netpoints (referred to as an end-linked system), namely with NPs acting as netpoints to chemically connect the dual end-groups of each polymer chain to form a network. By taking advantage of this strategy, the anisotropic NPs can be uniformly distributed in the polymer matrix, with the NPs being separated via the connected polymer chains.

View Article and Find Full Text PDF

Although numerous research studies have been focused on studying the self-assembled morphologies of block-copolymers (BCPs) and their nanocomposites, little attention has been directed to explore the relation between their ordered structures and the resulting mechanical properties. We adopt coarse-grained molecular dynamics simulation to study the influence of the morphologies on the stress-strain behavior of pure block copolymers and block copolymers filled with uniform or Janus nanoparticles (NPs). At first, we examine the effect of the arrangement (di-block, tri-block, alternating-block) and the components of the pure block copolymers, and by varying the component ratio between A and B blocks, spherical, cylindrical and lamellar phases are all formed, showing that spherical domains bring the largest reinforcing effect.

View Article and Find Full Text PDF

Although the research of the self-assembly of tri-block copolymers has been carried out widely, little attention has been paid to study the mechanical properties and to establish its structure-property relation, which is of utmost significance for its practical applications. Here, we adopt molecular dynamics simulation to study the static and dynamic mechanical properties of the ABA tri-block copolymer, by systematically varying the morphology, the interaction strength between A-A blocks, the temperature, the dynamic shear amplitude and frequency. In our simulation, we set the self-assembled structure formed by A-blocks to be in the glassy state, with the B-blocks in the rubbery state.

View Article and Find Full Text PDF

The close-form expressions of the Young's moduli and the fracture stresses of cyclicgraphene, graphyne and supergraphene along their armchair and zigzag directions are derived based on a molecular mechanics model. Checking against present finite-element calculations of their Young's moduli shows that the explicit solutions are reasonable. The obtained analytical solutions should be of great help for understanding the mechanical properties of the graphene-like materials.

View Article and Find Full Text PDF

We adopted molecular dynamics simulation to study the conductive property of nanorod-filled polymer nanocomposites by focusing on the effects of the interfacial interaction, aspect ratio of the fillers, external shear field, filler-filler interaction and temperature. The variation of the percolation threshold is anti N-type with increasing interfacial interaction. It decreases with an increase in the aspect ratio.

View Article and Find Full Text PDF

By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction ε(np) volume fraction of grapheme φ thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as C60 CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of ε(np) and φ and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment.

View Article and Find Full Text PDF

Through coarse-grained molecular dynamics simulations, we have studied the effects of grafting density (Σ) and grafted chain length (Lg) on the structural, mechanical and visco-elastic properties of end-grafted nanoparticles (NPs) filled polymer nanocomposites (PNCs). It is found that increasing the grafting density and grafted chain length both enhance the brush/matrix interface thickness and improve the dispersion of NPs, but there seems to exist an optimum grafting density, above which the end-grafted NPs tend to aggregate. The uniaxial stress-strain behavior of PNCs is also examined, showing that the tensile stress is more enhanced by increasing Lg compared to increasing Σ.

View Article and Find Full Text PDF