Maize ( L.) is one of the world's staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs.
View Article and Find Full Text PDFWeed interference in the crop field is one of the major biotic stresses causing dramatic crop yield losses, and the development of herbicide-resistant crops is critical for weed control in the application of herbicide technologies. To identify herbicide-resistant germplasms, we screened 854 maize inbreed lines and 25,620 seedlings by spraying them with 1 g/L glufosinate. One plant (L336R), possibly derived from a natural variation of line L336, was identified to have the potential for glufosinate tolerance.
View Article and Find Full Text PDFMaize tassel is the male reproductive organ which is located at the plant's apex; both its morphological structure and fertility have a profound impact on maize grain yield. More than 40 functional genes regulating the complex tassel traits have been cloned up to now. However, the detailed molecular mechanisms underlying the whole process, from male inflorescence meristem initiation to tassel morphogenesis, are seldom discussed.
View Article and Find Full Text PDFGenic male sterility (GMS) mutant is a useful germplasm resource for both theory research and production practice. The identification and characterization of GMS genes, and assessment of male-sterility stability of GMS mutant under different genetic backgrounds in (maize) have (1) deepened our understanding of the molecular mechanisms controlling anther and pollen development, and (2) enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for hybrid breeding. Here, we reported a complete GMS mutant (), which displays abnormal anther cuticle and pollen development.
View Article and Find Full Text PDFGenic male sterility (GMS) is very useful for hybrid vigor utilization and hybrid seed production. Although a large number of GMS genes have been identified in plants, little is known about the roles of GDSL lipase members in anther and pollen development. Here, we report a maize GMS gene, ZmMs30, which encodes a novel type of GDSL lipase with diverged catalytic residues.
View Article and Find Full Text PDF