Publications by authors named "Jianwu DaI"

Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.

View Article and Find Full Text PDF

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases.

View Article and Find Full Text PDF

This study investigated the effect of hot water blanching (HWB), high-humidity air-impingement blanching (HHAIB), different HHAIB blanching times (2, 4, 6, 8, and 10 min), and different HHAIB blanching temperatures (80, 85, 90, and 95°C) on texture quality, lignin content, weight loss, color, microstructure, and drying kinetics of bamboo shoots. After HWB treatment, the lignin content of bamboo shoots was apparently lower than that of HHAIB and the samples obtained the highest weight loss value of 6.13%.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI.

View Article and Find Full Text PDF

The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion.

View Article and Find Full Text PDF
Article Synopsis
  • Spinal cord injury (SCI) is a serious neurological condition that leads to significant loss of movement and sensory function, posing a major global health challenge.
  • Electroactive bioscaffolds have been developed to aid in spinal cord regeneration by creating conductive pathways and fostering a supportive environment for nerve repair, mimicking the natural spinal cord.
  • The review discusses the underlying issues caused by SCI, highlights the importance of electrical signals in the repair process, and summarizes advancements in conductive and piezoelectric bioscaffolds, while also addressing future challenges and opportunities in this field.
View Article and Find Full Text PDF

Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs.

View Article and Find Full Text PDF

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences.

View Article and Find Full Text PDF

Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle.

View Article and Find Full Text PDF

Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.

View Article and Find Full Text PDF
Article Synopsis
  • *Their effectiveness is often reduced due to the volatility of their bioactive compounds, but combining EOs with biopolymers helps stabilize them and control their release.
  • *While there is extensive research on EOs-loaded biopolymers in food applications, limited studies focus on their use in confectionery processes, indicating a need for further exploration in this area.
View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection.

View Article and Find Full Text PDF

In women, a healthy and functional vagina is important for the maintenance of a good quality of life. Various factors, including congenital anomalies, cancer, trauma, infections, inflammation, or iatrogenic injuries, can lead to damage or loss of the vaginal structure, necessitating repair or replacement. Often, such reconstruction procedures involve the use of nonvaginal tissue substitutes, like segments of the large intestine or skin, which are less than ideal both anatomically and functionally.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes tissue structure damage and composition changes of the neural parenchyma, resulting in severe consequences for spinal cord function. Mimicking the components and microstructure of spinal cord tissues holds promise for restoring the regenerative microenvironment after SCI. Here, we have utilized electrospinning technology to develop aligned decellularized spinal cord fibers (A-DSCF) without requiring synthetic polymers or organic solvents.

View Article and Find Full Text PDF

Due to adhesion and rejection of recent traditional materials, it is still challenging to promote the regenerative repair of abdominal wall defects caused by different hernias or severe trauma. However, biomaterials with a high biocompatibility and low immunogenicity have exhibited great potential in the regeneration of abdominal muscle tissue. Previously, we have designed a biological collagen scaffold material combined with growth factor, which enables a fusion protein-collagen binding domain (CBD)-basic fibroblast growth factor (bFGF) to bind and release specifically.

View Article and Find Full Text PDF

Intrauterine adhesion is a major cause of female reproductive disorders. Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe intrauterine adhesion obtain live birth, no large sample randomized controlled studies on this therapeutic strategy in such patients have been reported so far. To verify if the therapy of autologous bone marrow stem cells-scaffold is superior to traditional treatment in moderate to severe intrauterine adhesion patients in increasing their ongoing pregnancy rate, we conducted this randomized controlled clinical trial.

View Article and Find Full Text PDF

Tissue engineering techniques bring the promise of vaginal reconstruction with low invasiveness and fewer complications. However, existing biomaterial scaffolds remain limited in efficient vaginal recovery, focusing only on regenerating an epithelial layer, but muscle layers are missing or abnormal. The lack of a multi-tissue hierarchical structure in the reconstructed vagina leads to shrinking, stenosis, and fibrosis.

View Article and Find Full Text PDF

Neural regeneration after spinal cord injury (SCI) closely relates to the microvascular endothelial cell (MEC)-mediated neurovascular unit formation. However, the effects of central nerve system-derived MECs on neovascularization and neurogenesis, and potential signaling involved therein, are unclear. Here, we established a primary spinal cord-derived MECs (SCMECs) isolation with high cell yield and purity to describe the differences with brain-derived MECs (BMECs) and their therapeutic effects on SCI.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to severe sensory and motor dysfunction below the lesion. However, the cellular dynamic responses and heterogeneity across different regions below the lesion remain to be elusive. Here, we used single-cell transcriptomics to investigate the region-related cellular responses in female rhesus monkeys with complete thoracic SCI from acute to chronic phases.

View Article and Find Full Text PDF

Introduction: Insect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy.

Methods: To address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX.

View Article and Find Full Text PDF

Macrophages are a key and heterogeneous cell population involved in endometrial repair and regeneration during the menstrual cycle, but their role in the development of intrauterine adhesion (IUA) and sequential endometrial fibrosis remains unclear. Here, we reported that CD301 macrophages were significantly increased and showed their most active interaction with profibrotic cells in the endometria of IUA patients compared with the normal endometria by single-cell RNA sequencing, bulk RNA sequencing, and experimental verification. Increasing CD301 macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts and resulted in extracellular matrix accumulation, which destroyed the physiological architecture of endometrial tissue, drove endometrial fibrosis, and ultimately led to female infertility or adverse pregnancy outcomes.

View Article and Find Full Text PDF

Therapeutic options are limited for severe lung injury and disease as the spontaneous regeneration of functional alveolar is terminated owing to the weakness of the inherent stem cells and the dyscrasia of the niche. Umbilical cord mesenchymal-derived stem cells (UC-MSCs) have been applied to clinical trials to promote lung repair through stem cell niche restruction. However, the application of UC-MSCs is hampered by the effectiveness of cell transplantation with few cells homing to the injury sites and poor retention, survival, and proliferation in vivo.

View Article and Find Full Text PDF

Controllable drug delivery systems (DDS) can overcome the disadvantages of conventional drug administration processes, such as high dosages or repeated administration. Herein, a smart DDS collagen hydrogel is deployed for spinal cord injury (SCI) repair based on modular designing of "egg" nanoparticles (NPs) that ingeniously accomplish controlled drug release via inducing a signaling cascade in response to external and internal stimuli. The "egg" NPs consist of a three-layered structure: tannic acid/Fe /tetradecanol "eggshell," zeolitic imidazolate framework-8 (ZIF-8) "egg white," and paclitaxel "yolk.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is one of the important causes of death worldwide. The incidence and mortality rates are increasing annually with the intensification of social aging. The efficacy of drug therapy is limited in individuals suffering from severe heart failure due to the inability of myocardial cells to undergo regeneration and the challenging nature of cardiac tissue repair following injury.

View Article and Find Full Text PDF