Publications by authors named "Jianting Han"

Protein filaments are ubiquitous in nature and have diverse biological functions. Cryo-electron microscopy (cryo-EM) enables the determination of atomic structures, even from native samples, and is capable of identifying previously unknown filament species through high-resolution cryo-EM maps. In this study, we determine the structure of an unreported filament species from a cryo-EM dataset collected from Bacillus amyloiquefaciens biofilms.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant NF-κB signaling is linked to diseases like autoimmune disorders and cancer, prompting research into ways to inhibit this pathway.
  • The study focused on creating cyclic peptide inhibitors that effectively disrupt the NEMO and IKKα/β protein interaction, showcasing benefits like improved stability and reduced cytotoxicity.
  • Results indicated that these cyclic peptides not only inhibit NF-κB signaling but also show promise for treating acute lung injury and can enhance the development of peptide-based therapeutics.
View Article and Find Full Text PDF

Bacteria develop a variety of extracellular fibrous structures crucial for their survival, such as flagella and pili. In this study, we use cryo-EM to identify protein fibrils surrounding lab-cultured Bacillus amyloiquefaciens and discover an unreported fibril species in addition to the flagellar fibrils. These previously unknown fibrils are composed of Vpr, an extracellular serine peptidase.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) continues to spread worldwide and remains one of the leading causes of death among infectious diseases. The enoyl-acyl carrier protein reductase (InhA) belongs to FAS-II family and is essential for the formation of the Mycobacterium tuberculosis cell wall. Recent years, InhA direct inhibitors have been extensively studied to overcome MDR-TB.

View Article and Find Full Text PDF

Targeting of the PD-1/PD-L1 immunologic checkpoint is believed to have provided a real breakthrough in the field of cancer therapy in recent years. Due to the intrinsic limitations of antibodies, the discovery of small-molecule inhibitors blocking PD-1/PD-L1 interaction has gradually opened valuable new avenues in the past decades. In an effort to discover new PD-L1 small molecular inhibitors, we carried out a structure-based virtual screening strategy to rapidly identify the candidate compounds.

View Article and Find Full Text PDF

Given the current epidemic of multidrug-resistant tuberculosis, there is an urgent need to develop new drugs to combat drug-resistant tuberculosis. Direct inhibitors of the InhA target do not require activation and thus can overcome drug resistance caused by mutations in drug-activating enzymes. In this work, the binding thermodynamic and kinetic information of InhA to its direct inhibitors, phenoxyphenol derivatives, were explored through multiple computer-aided drug design (CADD) strategies.

View Article and Find Full Text PDF

Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichia coli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ.

View Article and Find Full Text PDF

FKBP51 is well-known as a cochaperone of Hsp90 machinery and implicated in many human diseases including stress-related diseases, tau-mediated neurodegeneration and cancers, which makes FKBP51 an attractive drug target for the therapy of FKBP51-associated diseases. However, it has been reported that only nature product rapamycin, cyclosporine A, FK506 and its derivatives exhibit good binding affinities when bound to FKBP51 by now. Given the advantages of peptide-inhibitors, we designed and obtained 20 peptide-inhibitor hits through structure-based drug design.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the potential of small molecule compounds as alternative therapies to monoclonal antibodies in cancer immunotherapy by blocking the PD-1/PD-L1 interaction.
  • Researchers identified a compound called APBC that effectively interrupts PD-1/PD-L1 binding, enhancing T cell activity against tumors without causing significant liver toxicity.
  • APBC shows promise for future drug development aimed at improving immune response in cancer treatment, as evidenced by its performance in mouse models.
View Article and Find Full Text PDF

Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump.

View Article and Find Full Text PDF

The family of PhlG proteins catalyses the hydrolysis of carbon-carbon bonds and is widely distributed across diverse bacterial species. Two members of the PhlG family have been separately identified as 2,4-diacetylphloroglucinol (2,4-DAPG) hydrolase and phloretin hydrolase; however, the extent of functional divergence and catalytic substrates for most members of this family is still unknown. Here, using sequence similarity network and gene co-occurrence analysis, we categorized PhlG proteins into several subgroups and inferred that PhlG proteins from Mycobacterium abscessus (MaPhlG) are likely to be functionally equivalent to phloretin hydrolase.

View Article and Find Full Text PDF

The mqsRA operon encodes a toxin-antitoxin pair that was characterized to participate in biofilm and persister cell formation in Escherichia coli. Notably, the antitoxin MqsA possesses a C-terminal DNA-binding domain that recognizes the [5'-AACCT(N) AGGTT-3'] motif and acts as a transcriptional regulator controlling multiple genes including the general stress response regulator RpoS. However, it is unknown how the transcriptional circuits of MqsA homologues have changed in bacteria over evolutionary time.

View Article and Find Full Text PDF

Certain strains of biocontrol bacterium produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named and it is still unclear how the pathway-specific regulator within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in strain 2P24 represses the expression of the gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ factors.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on identifying and characterizing mutations in BRI1, a key receptor for brassinosteroids in the plant Arabidopsis, to better understand its cellular functions.
  • Over 20 mutant alleles have already been identified, and the research presents 83 new point mutations, highlighting variations in phenotypic expressions ranging from subtle to severe.
  • Biochemical analyses reveal that certain mutations affect BRI1's activity, including one that shows reduced auto-phosphorylation and others that disrupt interactions with brassinolide and co-receptors, providing new insights into brassinosteroid signaling mechanisms.
View Article and Find Full Text PDF

The compound p-nitrophenol, which shows the anti-androgenic activity, can easily become anthropogenic pollutants and pose a threat to the environment and human health. Previous work indicates that the anti-androgenic mechanism of p-nitrophenol is complex and may involve several components in the AR signaling pathway, but the molecular details of how p-nitrophenol inhibits AR signaling are still not quite clear. Here, we characterized p-nitrophenol binds to the FK1 domain of an AR positive regulator FKBP51 with micromolar affinity and structural analysis of FK1 domain in complex with p-nitrophenol revealed that p-nitrophenol occupies a hydrophobic FK1 pocket that is vital for AR activity enhancement.

View Article and Find Full Text PDF