Publications by authors named "Jiantao Ye"

Pathological cardiac hypertrophy often precedes heart failure due to various stimuli, yet effective clinical interventions remain limited. Recently, microRNAs (miRNAs) have been identified as critical regulators of cardiovascular development. In this study, we investigated the role of miR-146b-5p and its underlying mechanisms of action in cardiac hypertrophy.

View Article and Find Full Text PDF

Although accumulating evidence has revealed that autophagy inhibition contributes to the development of pathological cardiac hypertrophy, the mechanisms leading to declined autophagy activity in the hypertrophic heart remain to be elucidated. Exosomes are known to be important mediators of intercellular communication, and the involvement of exosomes in cardiovascular abnormities has attracted increasing attentions. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart.

View Article and Find Full Text PDF

Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored.

View Article and Find Full Text PDF

Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling.

View Article and Find Full Text PDF

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation (PARylation) and SUMO modification (SUMOylation) are novel post-translational modifications (PTMs) mainly induced by PARP1 and SUMO1. Growing evidence has revealed that C/EBPβ plays multiple roles in biological processes and participates in cardiovascular diseases. However, the cross-talk between C/EBPβ PARylation and SUMOylation during cardiovascular diseases is unknown.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO).

View Article and Find Full Text PDF

Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients.

View Article and Find Full Text PDF

Aim: By activating prostacyclin receptors (IP receptors), prostacyclin (PGI ) exerts cardiovascular protective effects such as vasodilation and inhibition of vascular smooth muscle cell (VSMC) proliferation. However, IP receptors are dysfunctional under pathological conditions, and PGI produces detrimental effects that are opposite to its physiological protective effects via thromboxane-prostanoid (TP) receptors. This attempted to investigate whether or not IP receptor dysfunction facilitates the shift of PGI action.

View Article and Find Full Text PDF

Cardiac fibrosis is a typical pathological change in various cardiovascular diseases. Although it has been recognized as a crucial risk factor responsible for heart failure, there is still a lack of effective treatment. Recent evidence shows that microRNAs (miRNAs) play an important role in the development of cardiac fibrosis and represent novel therapeutic targets.

View Article and Find Full Text PDF

Background And Purpose: Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated. The present study focused on H4R3 symmetric di-methylation (H4R3me2s) induced by protein arginine methyltransferase 5 (Prmt5), and explored its epigenetic regulation and underlying mechanisms in cardiomyocyte hypertrophy.

Methods And Results: 1.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common pathological change found in various cardiovascular diseases. Although it has long been recognized as an important risk factor responsible for heart failure, there is still a lack of effective treatments in clinic. Chrysophanol is a natural compound with multiple biological activities and protective roles in the cardiovascular system.

View Article and Find Full Text PDF

Protocatechuic aldehyde (PCA) is a natural compound found in the Chinese herb Salvia miltiorrhiza. It has been shown to possess multiple biological activities and to protect the cardiovascular system against oxidative stress, inflammation, and atherosclerosis. However, the potential effects of PCA on cardiac hypertrophy remain to be investigated.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) exhibits various functions according to its subcellular location, which is finely conditioned by diverse post-translational modifications, such as acetylation. The nuclear HMGB1 may prevent from cardiac hypertrophy, whereas its exogenous protein is proven to induce hypertrophic response. This present study sought to investigate the regulatory relationships between poly(ADP-ribose) polymerase 1 (PARP1) and HMGB1 in the process of pathological myocardial hypertrophy.

View Article and Find Full Text PDF

Jumonji domain-containing protein D3 (JMJD3), a histone 3 lysine 27 (H3K27) demethylase, has been extensively studied for their participation in development, cellular physiology and a variety of diseases. However, its potential roles in cardiovascular system remain unknown. In this study, we found that JMJD3 played a pivotal role in the process of cardiac hypertrophy.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways. It has been shown that activation of AMPK could inhibit fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby suppressing cardiac fibrosis. Baicalin, the major component found in skullcap, possesses multiple protective effects on the cardiovascular system.

View Article and Find Full Text PDF

The RasGAP SH3 domain-binding proteins (G3BPs) are a family of RNA-binding proteins that can co-ordinate signal transduction and post-transcriptional gene regulation. G3BPs have been shown to be involved in mediating a great diversity of cellular processes such as cell survival, growth, proliferation and apoptosis. But the potential roles of G3BPs in the pathogenesis and progression of cardiovascular diseases remain to be clarified.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma (SACC) is a relatively uncommon epithelial-like malignancy that can occur in the head and neck region. Despite its slow growth, this aggressive salivary gland tumor frequently recurs and metastasizes to distant organs since lacking effective chemotherapy treatment. MicroRNAs are key regulators in tumor metastasis and progression, but their roles during SACC progression have not been illustrated.

View Article and Find Full Text PDF

Statement Of Problem: Cobalt-chromium (Co-Cr) alloys have been widely used for metal-ceramic fixed prostheses and can be fabricated using conventionally cast or new computer-aided technology. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation.

Purpose: The purpose of this in vitro study was to evaluate the metal-ceramic bond strength of a Co-Cr alloy made by casting, milling, and selective laser melting (SLM).

View Article and Find Full Text PDF

Background: A few modified approaches have been reported for performing endoscope-assisted dissections of benign parotid tumors, but none that use incisions totally hidden in a natural furrow. This study evaluated the feasibility of performing endoscope-assisted extracapsular dissections of benign parotid tumors using a single cephaloauricular furrow incision.

Methods: Forty-six patients with benign parotid superficial lobe tumors were randomly divided into two groups: an endoscope-assisted (21 patients) group or a conventional (25 patients) surgery group.

View Article and Find Full Text PDF

The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs.

View Article and Find Full Text PDF

Objective: Tongue squamous cell carcinoma (TSCC) is the most common malignant cancer in the oral cavity, with a high rate of metastasis to the neck lymphoid node. Angiopoietin-like protein 4 (ANGPTL4) and microvessel density (MVD) may be novel indicators for tumor metastasis. The aim of the present study was to investigate the expression and function of ANGPTL4 in TSCC and the relationship between ANGPTL4 and MVD.

View Article and Find Full Text PDF

The creation of a high bond strength between machined computer-manufactured pure titanium and porcelain remains problematic, and the effects of a silica coating on the bond strength of milled pure titanium bonded to dental porcelain require further investigation. The objective of this study was to evaluate the bond strength of machined pure titanium, with an intermediate coating of silica, to dental porcelain. In this work, 24 specimens of milled pure titanium were prepared and randomly divided into test and control groups, in which the test group was coated with silica using the sol-gel dipping technique.

View Article and Find Full Text PDF

SIRT6 is a member of the sirtuin family of class III histone deacetylases. It plays important roles in regulating genomic stability, metabolism, stress response and aging. Our previous study has revealed that SIRT6 attenuates myocardial hypertrophy by inhibiting NF-κB activation, but the related molecular mechanisms remain to be clarified.

View Article and Find Full Text PDF